=i DL

What's New In
IDL 5.6

IDL Version 5.6

RE S EARCH October, 2002 Edition
‘ SYST EMS Copyright © Research Systems, Inc.
A Kodak Company All Rights Reserved.

1002IDL56WN

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerica Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ jsatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library

Copyright © 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and A pplied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisysunder U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424,

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Ccontents

Chapter 1:

Overview of New Features in IDL 5.6ccovvvviiviiiiiiiieeeeee e 11
Visuaization ENNANCEMENTSooiiiiiie e e e 12
MeESALIDrary UPAEALEccoreriieieieiiieeiee ettt st st s e e e e seee s 12
Labelsfor Contour ODJECESoiii i et 13
Labelsfor POIYIINE ODJECESoouiiieieeeee et e 14
LabelSTor ISOCONTOUR ..ottt sttt e e nee e 15
New User-Defined Clipping Planesfor ODJECtSooeiviiiieiiiicen e 15
New Keyword to Determine the Maximum Number of Clipping Planes.................. 15
Enhancements for Displaying Points and Lines in Object Graphicscccceceenuene 16
OpenGL Hardware Support for Object Graphicson HP and LinuXcccccceeuven. 18
New User-Defined Cursor REGISIIationccc.coceeieeirin e 18
New Keyword to PickData Method ... 18
ANalysiS ENNGNCEMENLSot et et e 19
New LAPACK Linear Algebra ROULINEScccoiiiiiiiiiiceeee e 20

What's New in IDL 5.6 3

New DIAG_MATRIX FUNCHON ..ot e et 23
New MATRIX_POWER FUNCHON ..ot s 23
NeW PRODUCT FUNCLIONc.oiuiitieiiieeee st e e eneenn 23
New Run-length Encoding for ROI MasKSccereienieiriene e 23
New ComplexX [NPUE SUPPOITc.ooviieeee et 23
ENhancementSt0 ATAN ..ot e e e 24
Enhancements to the BESEL FUNCLIONSc.cocoeiiiiinicirce s 24
Enhancement to the CURVEFIT FUNCLION ..ocoouiiiiiiiieciee s 24
Enhancements to the EXPINT FUNCLIONc.ooiiiiriieeereee e s 24
Enhancements to the GAUSSFIT FUNCHIONoooviiiiirieiriee s 24
Enhancements to the MEDIAN FUNCLIONccoiiiiiiiriciee e e 25
Language ENNANCEMENESccuoiiieiiieiere ettt e e e e 26
New Stride Syntax for Array SUDSCHPLSccoveerireienieiiriee e 26
New Shared Memory SUPPOITcoeieeriere ettt enee s 27
New and Enhanced File Handling ROULINEScccoeiiiininieeiee e 28
New SWAP_ENDIAN_INPLACE Procedurecccemenereieeene e 29
New Keywords to SWAP_ENDIAN FUNCLIONcoooiiiiiininecce e 29
Enhancements to the EXPAND_PATH FUNCION ..o 29
Enhancements to the MAKE_DLL Procedureccccooeierienneeeeeneeeeesiie e 30
New STRICTARRSUBS Option to0 COMPILE_OPTcccoiiiiiinerereeireee e 30
Large File Support for AIX and Linux Platformsccccoeveeeieienennnneene e 30
Large File Support For Compressed Filesccooveieieienineeee e e 31
64-bit Memory Support On More Platformsccoeverneeie s 31
Thread Pool and Multi-Threading Support On AIX and Mac OS Xccocvveeiennene 31
Enhancements to the KEYWORD _SET FUNCHONooooiiiiriiriieeeeneeeeeeee e 32
File ACCESS ENNANCEMENEScoiuiiiieieiee ettt e st s e s e 33
NeW SUPPOIT FOr ITIFF ..o e s 33
NeW XML Parser ODJECEccooveieieiirereee et 33
NEW HDFS5 ROULINESeiiuiiiiieieiie ettt sttt st st e e e e en e snae s 34
New H5 BROWSER ROULINEccccouiiiiieiie et e s e 35
HDF and HDF-EOS Library UPAatesccooiieiieieie e s 36
Enhanced Support for ShapefileS ..o 36
MaPPING ENNANCEMENEScveieiiiie et e st e s e sreen e e 37
IDLDE ENNBNCEMENLScoitiiuiieeiiiieeieeetie et es et st st ie e e e seeenbe e e e e e seeeneesnbeeneas 38
Copying and Pasting Multiple IDL Code LiNeSccccoerereeienesiereeeee e 38
BIOCK COMIMENESvieee ettt st e e e s e 39

Contents What's New in IDL 5.6

Changes to Path PrefErenCes ..o 39
IDL GUIBUIlder ENNENCEMENLSccueeeiiieiie et et s 41
User Interface ToolKit ENNANCEMENTSccoiiiiireeeeie e e 42

NeW COM FUNCHONGITYoieieeieiie et et e 43

New CombODOX WIAGELccooriiieiire it ene i 44

NEW Tah WILGEL ...ttt e e e 45

NEW TrEE WILGEL ...ttt s e e eb e e ene e 45

Table Widget ENNaNCEMENLSccveviririiieiire e s e 46

Move, Iconify, Size Events for Base WIidgetSccccueeeverierieeeie e 47

Color Bitmap Buttons from Array Dal@c.ccceeeeeiieerenieneeire e 49

Push and TOggI€ BULIONScceuiiuiiiieeiiriee et e 49

Checkmarks 0N MeNnU BULLONSccurerienieiirinie e s 50

Tooltips for Button and Draw WIdQELSoceeereerieineneeneire e e 50

Keyboard Events for Draw WIAQELSccoeviririreeieie e s 51

Scrolling Draw Widget ENNanCEMENTScooveiiveireeeeie e s 52

Label Widget ENNANCEMENTScoiiieiieie et e 53

Enhancements to WIDGET _INFO ..ot 54
New Personal USE LICENSINGcooirririeieie sttt sresr e s e e ene s e 55
New Support for MaCintosh OS X ..o e s 56
Documentation ENNBNCEMENLSooiiieiiiiii e e 57

New Image Processing in IDL Manualccoeveeieieiinieneee e 57

Revised Graphical User Interface DOCUMENLELIONcccoveveeiereninieeeee e 57

Revised and Enhanced External Development GUIdEccccecererenieeneenesinieseene 58

Version History in Reference DOCUMENTAiONcccceeruerereeneeninie e 58

New Online HElP SYSLEMS ..o e 58
New and Enhanced IDL ODJECESccourieiirireeie et s s 60

NeW IDL ODJECE CIASSEScccueiirrieierieiie ettt et e e s sreen e 60

New IDL ObjeCt MENOMSccoiieiieiie et e 60

IDL Object Method ENhaNCEMENEScccoeeiriireiieeiee e e 61
New and Enhanced IDL ROULINEScc.ouiiiiiieeie ettt e 89

NEW IDL ROULINESccviitiieeieie sttt sttt e s e sr s 89

IDL Routing ENNANCEMENTSoceiiiiieeeete et s 111
ION 1.6 ENNBNCEMENLS ..ottt sttt e e e 135

ION Script ENNANCEMENESc.ooieiiceeie sttt e 135

ION Java ENNANCEMENTSocueiiiiiie et s s 137
Routines Obsoleted iN IDL 5.6ccoiiiiiieiieee e s 139

What's New in IDL 5.6 Contents

Requirements for thiSREIEASEccoiiiiiiiiree e s 140
DL 5.6 REQUITEIMENLSeeieuirieetieciieie ettt e s sr e et en e sn e 140
[ON 1.6 REQUITEIMENESviuietirieetieeeie et sr e et b sn e 142

Windows 98 Platform Support ENAINGccccoeeerrenineieeciree e e 144

Chapter 2:

New IDL Objects and MethodsSccccuiiiiiiiiiiiiii s 145

[IDLFEXMLSAX ODJECE ..ttt ettt et bbb s 146

[DLGrCONLOUN ODJECTeeueeeeeieie sttt ettt et et e e e nes 185

Chapter 3:

NEeW IDL ROULINES ..coiiiiiiiiieeieiee ettt 189

COPY _LUN ettt ettt et e bt st e e e bt b s bbb e b st eb et eeenenas 190

DIAG_MATRIX ettt et et bt et s bbb e e en e 193

FILE_COPY ettt ettt e e et b e s et st st b et bbbt s 196

FILE_LINES ...ttt ettt e et et s bttt ees 200

FILE_LTNK ettt st e e st e bt et es bbb s e en e 203

FILE_MOVE ..ottt ettt e st et e bbb eb e s 206

FILE_READLINK ..ottt sttt sttt e e eb et se e ben et een 209

FILE_SAME .ottt ettt e et bbb e bt st eb et e 211

H5 BROWSER ...ttt et ettt et sttt s e 214

HS_ CLOSE ...ttt et et e e e bt e b s bbb e en e 217

H5 GET_LIBVERSION ...coiiiiiiiiitiireet it sttt s e eb e s en e e 218

HS_ OPEN ..ottt et bbb e e bt e b s bbb e en e 219

HS PARSE ..ottt et et et e bt e a bbb e e 220

HBA _CLOSE ..ottt sttt et ettt e e bt et eb et e 225

HS5A_GET _INAME ...ttt et bt st e 226

H5A_GET_NUM_ATTRS ...ttt e e s 227

HBA _GET_SPAGCE ...ttt ettt et s e bt s b e s 228

HSA _GET_TYPE ..ottt ettt e s bt st 229

HSA _OPEN_IDX ..cutitiiirieriiee ettt sttt st e eb et st s e beb et ees 230

HS5A_OPEN_INAME ...ttt ettt e e bbb s 231

HBA READ ...ttt e et b e et e bt e b s b et s 232

HED _CLOSE ..ottt ettt b et st sttt e se e e b et st s bbb s 233

HED_GET_SPAGCE ...ttt ettt e eb et beb et s 234

H5D_GET_STORAGE_SIZE ..ottt e s 235

HED_GET_TYPE .ottt sttt e e b st s 236

Contents What's New in IDL 5.6

HED. OPEN ..o eeee e eeeeeeees e sese e ees e se e se e eeese e eees e se e ees e eeees e seeee e 237
HED. READ . eeoooeeeooeee e eee e ee e ee e eese e ees e ee e e ee e se e ees e e eeeseeeeee e eee e 238
HEE CLOSE veooee e eee e eeeeeseseseeeeeee e sese e eesseeese e se s eeese e seees e se e eeseaeeses e seeee e 241
T = E T) = JO OO 242
T =)= = N[O 243
HEG. CLOSE oo eee e eeeeeeeeseeeeeees e sese e ees s eese e se e eeese e eeees e se e ees e eesee e ees e 244
HEG_ GET _COMMENT oo e eeee e ee e se e eeese e esees e se e eeeseeseses e seees e 245
HEG_ GET LINKVAL oo e eeeesseeeee s e eee e eeese e seees e eese e eeeseeeesss e seees e 246
H5G_GET _MEMBER NAME ooooooeeoeoeeeeee oo eeee e e e e ees e seseeeseseeeesee e eee e 247
H5G_GET NMEMBERS ..ooooooeeeeeeeeeeseeeeeeeeeee e se e eeese e seees e eese e eeeseeeses e ees e 249
HEG_ GET_OBJIINFO eeeeeeeeee oo eeee e ees oo ee e ee e se e seees e eese e seseeeeees e see e 250
HEG._ OPEN ..o eee e eeeeee e e ees e se s eeees e ese e se e e se e ees e se e eeseesesee e ees e 252
HEI GET _TYPE ooeoeeeeeeeeeee oo eeeee e e e ees e e ee e se e ees e ee e eees e eses e eee e 253
T) == == =1 == N[0 =S 254
HER GET _OBJIECT TYPE ooooeeeeeeeeeeee oo eeee e ee e esese e ees e se e eseseesees e ees e 255
HES CLOSE vvoeee e eeeeeeeeeeeeeeseseeeseeeseeesese e ees s eese e se s eeess e eeees e se e eeeseeeesee e seeee e 257
HES COPY oo eeeeeeeeeeeeeeees e se s eeees e se e se e se e ees e se e eeseeesee e eee e 258
HES CREATE._SIMPLE oo eeeeeeeeeee e ee e eeeee e ees e se e eeeseeeeses e eee e 259
H5S GET _SELECT BOUNDS oeoomeveeeeeeeeseeeeeeeseeeeeseeeeessseeessees e se e eseseessses e ssses e 261
H5S GET _SELECT ELEM _NPOINTS wovoooeveeeeeeeeeeeeeeeseeeeeeeeeeesse e sseseeseseseesssee e 262
H5S GET_SELECT ELEM_POINTLIST eoovveereeeeeeeeeeeseeeeesseeeeesse e eseseessses e sseee e 263
H5S GET_SELECT HYPER BLOCKLIST ooooooeeeoeeeeeeeeeesseeeeeeee e eseseeeeseseeeseeseeeen 265
H5S GET_SELECT HYPER NBLOCKS ...oveoeeeeeeeeeeeeeeseeessees e esse e eseseeeeeeeeessees e 267
H5S GET _SELECT NPOINTS covooeeeeeeeeeeseeeeeeeeeeeeeseeeeeseseeessees e ss e eeeseeseseseeesees e 268
H5S GET_SIMPLE_EXTENT DIMS oooooeeeeeeeeeeoe oo eeeeeeeee e eeeseeeeses e eseee e 269
H5S GET_SIMPLE_EXTENT NDIMS coooooveeeeeeeeeeeeeee e eee e eseseesesee e eseee e 270
H5S GET_SIMPLE_EXTENT _NPOINTS ovveoeeeeeeeeeeeeseeeeesseeeeesseeeeeseseeseseseeessee e 271
H5S GET _SIMPLE_EXTENT _TYPE o oooooeoeeeeeeeeeeeeeeee e seees e se e eeeseeeesee e see e 272
HES 1S SIMPLE oo oo ses e eeese e ee e se e eeese e esees e se e ees e eeses e ees e 273
HES OFFSET SIMPLE eooeeeeeveee oo eee e eeeeeeeeeeese e se e ees e se e eaes e sesss e ees e 274
HES SELECT ALL eooeeeeeeeeee oo eeeeeseeeeeseeeseeeeee e sse e eee e eeees e ss e eesseeeese e eee e 275
H5S SELECT ELEMENTS «eoveeeeeeee oo eeeeeeeseeeeesseeeeeeseesssees e se e eseseeseses e seees e 276
H5S SELECT HYPERSLAB «..ooooooeeeeeee e eeeeeeeeeeeeee e seee e eee s se e eseseeseses e seees e 278
HES SELECT INONE . cveoeeeeee e eeeeese e eesee s e se e eeese e ees e se e eeeseeeesee s eee e 280
HES SELECT VALID oooooeeeee oo eeeeeeeeeeesesesse e eeeseseesees e ss e eseseeseses e seees e 281
T3 s 0 0 < =S 282

What's New in IDL 5.6 Contents

HET _COMMITTED ooorvvoeeeeveeeesseeseeeesssesseeesseesessessse s ssessssssssssssessesssseesssssssesessenns 283
L5 S 0L0) = 2T 284
HET EQUAL ovvvoeeeeeeeeeeeeeeeeseeeeseeesseeesesesssseseeesesaseses s ssssssssseess s esssssesessssssassssenns 285
HST_GET_ARRAY _DIMS .oooooereeveeeeseeeseessee e ssse s ssesssssssssssssssssssssesssssssassssenns 286
HET_GET_ARRAY _NDIMS w.oooooeveeeeeeeeeeesseeseesseesssessessssssssssesssssssesessssssssssssens 287
HET GET _CLASS oovoorvvveeeeeseeeeseeeseeeesesessesesssesssesesss s sssssssssssssssssessssesesssssssassssenns 288
Ly e = L= =3 T 290
Ly e = i == 1N TR 201
HET _GET_FIELDS ovooreveveeeeveeeesseeseseesesessseesseesesasssss s sesssssssesss s ssssssssessssssssssssenns 292
Ly e = 1 VL= o T 294
H5T_GET_MEMBER_CLASS ..oormvveeeeeeeeeesseeseessseessessesssesssssssssssssssssessssssssssssenns 295
H5T_GET_MEMBER_NAME ..oorvveeeeeeeeesseeseeesssesssessesssessssssessssssssssessssssssssssenns 297
H5T_GET_MEMBER_OFFSET .orvvoeereeeeeeesseeseennesseessessesssssssssssssssssssssssssssssssssens 298
H5T_GET_MEMBER_TYPE .ooooeevveeeeeeeeeesseessensssesssessssssesssssssssssssssssesssssssasssses 299
HET_GET_NMEMBERS ...covtvveoeeeseeeeseesseeesseesesnesssessessessssssessssssssssssssesssssssessssenns 300
HET _GET _NORM ovoooreeeeeeeseeeeseeeseeeesesesseeeseeessssessss s ssesssssssssssssssssssesessssssssssssenns 301
Ly e =)= =1 =3 LT 302
HET_GET_ORDER ..ooorovvveeeeseeeesseeseeeesseessssesseesessesses s ssesssssssssssssessssssesesssssssassssenns 303
Ly e = =N o OO 304
HET_GET_PRECISION .vvvcooveeoereeseeeeseesseeesseessesssssessessessssssessssssessssssssesssssssssssenns 305
HET _GET_SIGN vveoeeeveeeeseeeeeoesseeseesssesseessss s esss s asssssssesssssssessssessessssssssssssenns 306
LSy R = 4 =T 307
HET _GET_STRPAD ..orvvveeeeveeeesseeseeeesesesseeesseessssssss s ssesssssssssssssessssssesessssssssssssenns 308
HET _GET_SUPER ovooorevveeeeeeseeeesseeseeeesssessesesseesssnessss s sssssssssssss s sessssssessssssssssssenns 309
HET IDLTYPE woorvvvoeereeeeoeeseeeseseeseeessseesesessssssesesesssssss s ssssssssssssssssessssssesessssssassssenns 310
HET MEMTY PE wvvooeeeveeee e eseeseesesesssssse s ssss s ssssssssesss s sssssesessssssssssssenns 312
L5y)= = N T 313
LA_CHOLDC ovvoveeeeeoeeeeeeeseeeseseeseeeseeeesesessssesseesesnsssss s sssssssssssssssssssssssssesssssssassssenns 314
LA _CHOLMPROVE «.cvvooeeeeveeeseeeeesessesesessse s ssss s ssssssssesssssssssssssssessssssssssssenns 317
LA _CHOLSOL ervveoeeeeeeeeseeseeeesseesessssesseesese s esss s asssssssessssssssssssessessssssssssssens 320
0N o) =3 1= =Y ST 323
I =TT = =l = = Y O 325
LA_EIGENQL ooreeeeeeeseeeeeeeeeeseeeesseesssessesessssesseesssssssss s ssessssssessssssesssssssesssssssesssseons 331
10N = [T NI = o 337
LA _ELMHES coooeeeveeeeeeeeeeseeeseseeseeessseesesessssesseesssasssss s assssssssesssssessssssssesssssssassssenns 341
LA _GM_LINEAR MODEL voooeeveeeeeeeeeeesseeseenssseesessesssssssssssessssssssesesssssssessssenns 344

Contents What's New in IDL 5.6

LA HQR ettt ettt e e et b e b e h e h e n bt ee e 347
LA _INVERT ottt ettt s et e st b et e b st n et sen e 350
LA_LEAST_SQUARE_EQUALITY ettt e 352
LA_LEAST_SQUARES ..ottt sttt et e 355
LA_LINEAR_EQUATION .ottt ettt et e 359
LA_LUDC .ttt et e et e b e e b et b st ee e e 362
LA_LUMPROVE ...ttt ettt e st et n st eenae e 365
LA _LUSOL ettt s et et st b et e bt s et en e 368
LA _SVD ittt e e bbb b e bt h s n bt e e 371
LA_TRIDC ettt ettt et e bbbttt st b enenen 375
LA_TRIMPROVE ..ottt sttt e e st e sn s 379
LA _TRIQL ettt e ekt b et e b e bbbt e b e e b erenes 383
LA_TRIRED ..ttt e et et e bt e b s s b e e 386
LA_TRISOL ittt sttt b e st st h et bbbt et e b erenes 388
MAP_PROJ FORWARDoiitiiriitiie ettt st s sn s 391
MAP_PROJ INIT ettt et et st e er s 396
MAP_PROJ INVERSEooiitiiiiiie ettt st e st e 412
MATRIX_POWER ...ttt et e 414
PRODUCT ..ttt ettt e st b st ee st b e s b st et e eb et ea s s ses e be e senae e 416
REGISTER_CURSOR ...ttt sttt st e 419
SHMDEBUG ...ttt ettt e e sttt b e e et st bbb st 421
SHIMIMARP <.ttt e bbbttt sb e st b et et n bbb 423
Types Of MEmMOry SEJMENTSccccveierererieeie st ese et s sr e 430
Reference Counts And Memory Segment Lifecycle ... 434
SHMUNMARP .ttt et e bt e e bbb st b b n e bt 438
SHIMV AR e e bbb bbb st bt n bt 440
SKIP_LUN <ottt ettt et e bt bbb b st bt eb s bt 444
SWAP_ENDIAN_INPLAGCE ...ttt ettt e 447
TRUNCATE_LUN ottt sttt et ettt 449
WIDGET_COMBOBOX ..ottt et s e st s sb e ss e 451
WIDGET_TAB ottt sttt sttt e ettt st bbbt 459
WIDGET_TREE ...ttt ettt et ettt 467
Chapter 4:
Using the XML Parser Object Classcccccceeeiiiiiiiiiiiiiiieeee 477
ADOUE XML ottt et e sttt b et se e 478

What's New in IDL 5.6 Contents

10

ADOUL XML PAISE'S ...ttt s e e 478
USING thE XIML PaIrSErocuiieiieiere ettt sttt e s e 480
Subclassing the IDLfEXMLSAX ObJeCt CIaSSccevrieerrerienineseeseie e 480
USING YOUF PAISENceiiieiietisie ettt sttt e et e 483
LYz K6 = o o TSSO PTR PRSP 483
Example: Reading Data INto @N ATTAYccccvverereeeeiine e s s 485
Creating the xml_to_array OBJect Classcccuvireriiiine e 485
Using the Xml_tO_array Parsercocceveoerienene e s 490
Example: Reading Data INt0 STUCLUIEScc.oveiiriire e 492
Creating the xml_to_struct OBJeCt ClaSScccevrireriririre s 492
Using the Xml_tO_SLIUCE ParSErccoeueeeiieriireeie et eeeee st s 498
Building Complex Data SIrUCIUIESceeruieeieeiriese et 499
IO EX e 501

Contents What's New in IDL 5.6

Chapter 1.

Overview of New

Features In

This chapter contains the following topics:

IDL 5.6

Visualization Enhancements 12
AnalysisEnhancements 19
Language Enhancements 26
File AccessEnhancements 33
Mapping Enhancements 37
IDLDE Enhancements 38
IDL GUIBuUilder Enhancements 41
User Interface Toolkit Enhancements 42
New Personal UselLicensing............ 55

What's New in IDL 5.6

New Support for MacintoshOS X 56
Documentation Enhancements 57
New and Enhanced IDL Objects 60
New and Enhanced IDL Routines 89
ION 1.6 Enhancements 135
Routines Obsoleted inIDL 5.6 139
Requirementsfor thisRelease 140
Windows 98 Platform Support Ending .. 144

11

12 Chapter 1: Overview of New Features in IDL 5.6

Visualization Enhancements

The following enhancements have been made to IDL’s visualization functionality for
the 5.6 release:

e Mesalibrary Update

e Labelsfor Contour Objects

e Labelsfor Polyline Objects

e Labelsfor ISOCONTOUR

* New User-Defined Clipping Planes for Objects

* New Keyword to Determine the Maximum Number of Clipping Planes
» Enhancements for Displaying Points and Linesin Object Graphics

e OpenGL Hardware Support for Object Graphics on HP and Linux

* New User-Defined Cursor Registration

* New Keyword to PickData M ethod

Mesa Library Update

IDL 5.6 incorporates anew release of the Mesalibrary (version 4.0.1). Thislibrary is
used in IDL Object Graphics displays for platform independent software rendering
when the Object Graphics Software rendering preference is selected.

The benefits to this update are the following:

» Any graphical output derived when using software rendering in IDL conforms
to OpenGL standards since the Mesa 4.0 library passes the OpenGL
conformance suite.

» The Tessdlator is much more robust, allowing it to tessellate complex and
degenerate polygons and TrueType fonts.

For information on the changes to the IDLgrTessdl lator object due to this upgrade,
see “New and Enhanced IDL Objects’” on page 60. For information on the issues that
have been solved in IDL due to this update, see the IDL release notes.

Visualization Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 13

Labels for Contour Objects

IDL 5.6 now supports labeling of contour lines for the IDLgrContour object.

Figure 1-1: New Labeling of Contour Lines Using IDLgrContour::Init
The following changes have been made to the IDLgrContour object class to support
this new functionality:
* New keywords to the IDLgrContour::Init method:
« AM_PM
C_LABEL_INTERVAL
C_LABEL_OBJECTS
C_LABEL_NOGAPS
C_LABEL_SHOW
C_USE_LABEL_COLOR

What's New in IDL 5.6 Visualization Enhancements

14 Chapter 1: Overview of New Features in IDL 5.6

C_USE LABEL_ORIENTATION
« DAYS OF WEEK
« LABEL_FONT
« LABEL_FORMAT
« LABEL_FRMTDATA
e LABEL_UNITS
« MONTHS
e USE_TEXT_ALIGNMENTS
* New IDLgrContour::GetL abellnfo method.
* New IDLgrContour::AdjustL abel method.
For a description of the new keywords and methods, see “New and Enhanced IDL
Objects’ on page 60.
Labels for Polyline Objects

IDL 5.6 now supports the labeling of polyline paths for IDLgrPolyline objects with
text and symbol objects. New keywords to the IDLgrPolyline::Init method which
support labeling of polyline paths are:

* LABEL_NOGAPS
* LABEL_POLYLINES
* LABEL_OFFSETS
* LABEL_OBJECTS
* LABEL_USE_VERTEX_COLOR
+ USE_LABEL_COLOR
» USE_LABEL_ORIENTATION
» USE_TEXT_ALIGNMENTS
For a description of the new keywords, see “IDLgrPolyline::Init” on page 75.

I'n addition, the Data argument to I DL grSymbol::Init now contains a new pre-defined
Arrow-Head (>) symbol (represented by the scalar 8). This allows you to easily add
arrowheads to the results of PARTICLE_TRACE.

Visualization Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 15

Labels for ISOCONTOUR

IDL 5.6 now supports the labeling of contour lines for the ISOCONTOUR routine.
New keywordsto the ISOCONTOUR routine which support labeling of contour lines
are:

* C_LABEL_INTERVAL
« C_LABEL_SHOW
* OUT_LABEL_OFFSETS
e OUT_LABEL_POLYLINES
e OUT_LABEL_STRINGS
For a description of the new keywords, see “ISOCONTOUR” on page 115.

New User-Defined Clipping Planes for Objects

IDL 5.6 now adds anew CLIP_PLANES keyword for all atomic graphic object
classesand to IDLgrModel. Thisallows you to specify the coefficients of the clipping
planes you wish to be applied to an object and its children, if applicable. Multiple
clipping planes can be applied, up to the maximum number supported by the device.
The new keyword appliesto the Init method of IDLgrAXxis, IDLgrContour,
IDLgrImage, IDLgrModel, IDLgrPlot, IDLgrPolygon, IDLgrPolyline, IDLgrROI,
IDLgrROIGroup, IDLgrSurface, IDLgrText and IDLgrVolume.

For more information, see “IDL Object Method Enhancements” on page 61.

New Keyword to Determine the Maximum Number of
Clipping Planes
IDL 5.6 contains anew MAX_NUM_CLIP_PLANES keyword for the
GetDevicelnfo method to IDLgrBuffer, IDLgrClipboard, IDLgrWindow, and
IDLgrVRML. Thiskeyword returns an integer that specifies the maximum number of

user-defined clipping planes supported by the device for use with the new
CLIP_PLANES keyword to atomic graphic objects.

For more information, see “IDL Object Method Enhancements” on page 61.

What's New in IDL 5.6 Visualization Enhancements

16 Chapter 1: Overview of New Features in IDL 5.6

Enhancements for Displaying Points and Lines in
Object Graphics

Point and line texture mapping allows you to more accurately control the color of a
line or point aswell as control the alpha blending of aline or point to achieve
transparency effects.

IDL will now automatically render a texture map on an |DLgrPolygon or
IDLgrSurface object when:

* A valid IDLgrImage object is specified in the TEXTURE_MAP property.
* Oneof thefollowing are set for the STY LE property:

* Points

* Wiremesh (IDLgrSurface only)

* Lines(IDLgrPolygon only)

* Filled

* RuledXZ (IDLgrSurface only)

* RuledYZ (IDLgrSurface only)

The following example demonstrates using a texture map on an IDLgrSurface object:
PRO ExText ur eOnRoad

Read el evation data file.
filename = FILEPATH(' el evbin.dat', $
SUBDI RECTCRY = [' exanples', 'data'])
dim= 64
hei ght Fi el d = READ_BI NARY(fil ename, $
DATADIMS = [dim din)

Get the color data froma palette suitable for
el evation.

oPalette = OBJ_NEW' I DLgrPal ette')

oPal ette -> LoadCT, 4

oPalette -> GetProperty, RED VALUES = red, $
GREEN_VALUES = green, BLUE_VALUES = bl ue

OBJ_DESTROY, oPalette

Create the texture.

Col ors correspond to height.

Set al pha to be transparent where the elevation is
; zero (suggesting water |level).
texture = BYTARR(4, dim dim /NOZERO)

Visualization Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 17

texture[0,*,*] = red[heightfield]
texture[1,*,*] = green[heightfield]
texture[2,*,*] = blue[heightfield]

al pha = BYTARR(di m di m

above = WHERE(hei ghtField gt 0)

al pha[above] = 255

texture[3,*,*] = al pha

oTexture = OBJ_NEW' I DLgrl mage', texture)

; Scale the geonetry for better view ng
hei ght Field = BYTSCL(heightField, TOP = 63) + 192

; Create textured surface nodel.
; Experinment with the STYLE property to see texturing
; effects for different styles.

oSurface = OBJ_NEW ' I DLgrSurface', heightField, $
COLOR = [255, 255, 255], TEXTURE_MAP = oTexture, $
STYLE = 2)

; Create a "road" that is color coded with the texture
; toindicate elevation. The first (black) line shows
; the intended path of the road. The second |line
; (textured and on top) shows the elevation of each
; point of the road, color coded with the texture. The
; mssing sections of this Iine, where the black shows
; through, indicate where the road passes over water.
road = [[0, 10], [30, 20], [40, 30], [45, 50], $
[12, 50], [2, 35], [5, 20]]
oLi nel = OBJ_NEW' I DLgrPol ygon', road, $
COLOR = [0, O, 0], STYLE =1, THICK = 5, $
ZCOORD_CONV = [191, 1])
oLi ne2 = OBJ_NEW' I DLgr Pol ygon', road, $
COLOR = [255, 255, 255], TEXTURE_MAP = oTexture, $
TEXTURE_COORD = FLOAT(road)/dim STYLE = 1, $
THICK = 5, ZCOORD _CONV = [192, 1])

XOBJVI EW [oSurface], /BLOCK, $
TITLE = ' Texture Map on Surface', $
XSI ZE = 600, YSIZE = 400
XOBJVI EW [oLinel, oline2], /BLCCK, $
TI TLE = ' Texture Map on Road Pol ygon', $
XSI ZE = 600, YSIZE = 400
OBJ_DESTROY, [oTexture, oSurface, oLinel, oLine2]

END

What's New in IDL 5.6 Visualization Enhancements

18 Chapter 1: Overview of New Features in IDL 5.6

OpenGL Hardware Support for Object Graphics on
HP and Linux

IDL 5.6 now includes OpenGL hardware support for object graphics on the HP and
Linux platforms. OpenGL support is set by default and may be changed from the
IDLDE by selecting File — Preferences — Graphics.

Note
On the HP-UX platform, the indexed color model is not supported by the OpenGL
hardware accelerator. IDL revertsto software rendering if the color model property
of a destination object is set to indexed color (1).

New User-Defined Cursor Registration

IDL 5.6 now supports user-defined cursor registration by means of the new
REGISTER_CURSOR procedure. This allows you to define a bitmap to display as
the cursor in an IDLgrWindow to indicate the mouse position. Once a new cursor is
registered, it is accessible via the DL grWindow:: SetCurrentCursor method.

For more information see “REGISTER_CURSOR” on page 419 and
“IDLgrWindow::SetCurrentCursor” on page 88.
New Keyword to PickData Method

The new PICK_STATUS keyword to the PickData method of the IDLgrBuffer and
IDLgrWindow allows you to retrieve information about individual pixelswithin a
pick box defined using the DIMENSIONS keyword.

For more information on the PICK_STATUS keyword, see
“IDLgrWindow::PickData’ on page 87.

Visualization Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 19

Analysis Enhancements

The following enhancements have been made to IDL’s data analysis functionality for
the 5.6 release:

New LAPACK Linear AlgebraRoutines
New DIAG_MATRIX Function

New MATRIX_POWER Function

New PRODUCT Function

New Run-length Encoding for ROl Masks
New Complex Input Support
Enhancements to ATAN

Enhancements to the BESEL Functions
Enhancement to the CURVEFIT Function
Enhancements to the EXPINT Function
Enhancements to the GAUSSFIT Function

Enhancements to the MEDIAN Function

What's New in IDL 5.6 Analysis Enhancements

20 Chapter 1: Overview of New Features in IDL 5.6

New LAPACK Linear Algebra Routines

The LAPACK numerical library has been integrated into IDL to give you more robust
and accurate algorithms for solving systems of linear equations, singular value
decomposition, solving eigenvalue problems, and for linear |east-squares
calculations. IDL 5.6 includes 23 new routines that use the included LAPACK linear
algebra package. These routines are from the CLAPACK library, based on the
FORTRAN LAPACK version 3.0 library. For more information visit the Netlib
Repository at ht t p: / / www. net | i b. or g. For more details see Anderson et al.,
LAPACK Users Guide, 3rd ed., SIAM, 1999.

Sixteen of the new LAPACK routines supply similar functionality to existing
Numerical Recipesroutines. In these cases, the names have been taken from the
Numerical Recipes routine, with the addition of the LA_ prefix. Note however that
the LAPACK routine may not accept the same arguments or keywords as the
Numerical Recipesroutine. Also, because of differencesin algorithms between
LAPACK and Numerical Recipes, the results for the same procedure may have
different numerical values or different ordering.

In general, compared to Numerical Recipes, the LAPACK routines are more robust
and accurate, may be faster, and also handle complex numbers.

Note
For LAPACK routines that accept arrays, the arrays are expected to be in IDL's
column-major format, where the first dimension represents the columns and the
second dimension represents the rows. Internally, atranspose is automatically
applied before the array is passed to the LAPACK C routine. Likewise, a transpose
is applied to the result beforeit isreturned to the user.

The following table lists the available LAPACK routines, along with a short
description, Asterisks mark routines that also have a corresponding Numerical
Recipesroutinein IDL.

Linear Equations

LAPACK Routine Description
LA_CHOLDC* Cholesky factorization.
LA _CHOLMPROVE Improve solution using Cholesky
factorization.

Table 1-1: Linear Equation Routines

Analysis Enhancements What's New in IDL 5.6

http://www.netlib.org

Chapter 1: Overview of New Features in IDL 5.6

21

LAPACK Routine

Description

LA_CHOLSOL*

Solve linear equations using Cholesky.

LA_DETERM*

Array determinant using LU decomposition.

LA_INVERT*

Array inverse using LU decomposition.

LA_LINEAR_EQUATION

Solve linear equations using LU
decomposition.

LA_LUDC* LU decomposition.
LA _LUMPROVE* Improve solution using LU decomposition.
LA _LUSOL* Solve linear equations using LU
decomposition.
LA_TRIDC LU decomposition of tridiagonal array.
LA_TRIMPROVE Improve solution of atridiagonal problem.
LA_TRISOL* Solve linear equations with atridiagonal
array.
Table 1-1: Linear Equation Routines
Note

* Has a corresponding Numerical Recipes routine.

Eigenvalues and Eigenvectors

LAPACK Routine

Description

LA_EIGENPROBLEM

Eigenvalues and eigenvectors with error
estimates for nonsymmetric arrays.

LA_EIGENQL*

Compute selected eigenvalues and
eigenvectors for symmetric or Hermitian
array.

LA_EIGENVEC*

Selected eigenvectors of nonsymmetric
array.

Table 1-2: Eigenvalue and Eigenvector Routines

What's New in IDL 5.6

Analysis Enhancements

22 Chapter 1: Overview of New Features in IDL 5.6

LAPACK Routine Description
LA_ELMHES* Reduce nonsymmetric array to upper
Hessenberg.
LA_HQR* Eigenvalues of upper Hessenberg.
LA_TRIQL* Eigenvalues and eigenvectors of
tridiagonal array.
LA_TRIRED* Reduce symmetric array to tridiagonal.

Table 1-2: Eigenvalue and Eigenvector Routines

Note
* Has a corresponding Numerical Recipes routine.

Linear Least Squares

LAPACK Routine Description
LA_GM_LINEAR_MODEL Solve general Gauss-Markov linear model.
LA _LEAST_SQUARE_EQUALITY | Solve linear |east-squares problem with

constraint.
LA _LEAST_SQUARES Solve linear |east-squares problem.

Table 1-3: Linear Least Square Routines

Singular Value Decomposition

LAPACK Routine Description

LA_SvD* Singular value decomposition.

Table 1-4: Singular Value Decompositon Routine

Note
* The corresponding Numerical Recipes routine is SVDC.

For more information on these new routines, see Chapter 3, “New IDL Routines’.

Analysis Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 23

New DIAG_MATRIX Function

Thenew DIAG_MATRIX function constructs a diagonal matrix from an input vector,
or if given amatrix, then DIAG_MATRIX will extract adiagona vector.

For more details, see “DIAG_MATRIX” on page 193.
New MATRIX_ POWER Function

The new MATRIX_POWER function computes the product of a matrix with itself.
For example, the fifth power of array AisA# A# A# A# A. Negative powers are
computed using the matrix inverse of the positive power.

Theresult is a square array containing the value of the matrix raised to the specified
power. A power of zero returns the identity matrix.

For more details, see “MATRIX_POWER” on page 414.
New PRODUCT Function

The new PRODUCT function returns the product of elements within an array. The
product of the array elements can also be computed over agiven dimension. Thisnew
routineis similar to the TOTAL function used to sum elements within an array.

For more details, see “PRODUCT” on page 416.
New Run-length Encoding for ROl Masks

InIDL 5.6, you can now return arun-length encoded result for an ROI mask. For
large ROIs, a considerable savingsin space results. With the new RUN_LENGTH
keyword set for IDLanROI:ComputeMask or IDLanROIGroup::ComputeM ask
methods, the ROI mask result is a vector wherein each even-numbered subscript
contains the length of the run, and the following element contains the starting index
of therun.

For a description of the new keywords, see “IDLanROI::ComputeMask” on page 61
and “IDLanROIGroup::ComputeMask” on page 61.

New Complex Input Support

IDL 5.6 now supports complex input argumentsfor the following routines, GAMMA,
LNGAMMA, BETA, IBETA, IGAMMA, ERF, ERFC, and ERFCX.

For more information, see “IDL Routine Enhancements” on page 111.

What's New in IDL 5.6 Analysis Enhancements

24 Chapter 1: Overview of New Features in IDL 5.6

Enhancements to ATAN

The new PHASE keyword to the ATAN function can be used to compute ATAN

(Imaginary(Z), Real_part(Z)), but uses less memory and is faster. This new keyword
restores functionality provided by ATAN in IDL versions prior to 5.5.

For more information see “ATAN” on page 111.
Enhancements to the BESEL Functions
The new DOUBLE keyword to IDL’s Bessel functions allows you to specify whether

the functions should return a single- or a double-precision result.

The new ITER keyword to IDL’s Bessel functions allows you to retrieve the
maximum number of iterations for which the function will converge for agiven
value.

For more information on these new keywords, see “BESEL |, BESEL J, BESELK,
BESELY” on page 111.

Enhancement to the CURVEFIT Function

The new YERROR keyword to CURVEFIT can be set to a named variable that will
contain the standard error between YFIT and Y.

For more information on this new keyword, see “CURVEFIT” on page 112.
Enhancements to the EXPINT Function

The new ITER keyword to EXPINT defines a named variable that will contain the
actua number of iterations performed.

For more information on this new keyword, see “EXPINT” on page 113.
Enhancements to the GAUSSFIT Function

The following enhancements have been made to the GAUSSFIT function:

* Thenew YERROR keyword to GAUSSFIT returns the error associated with
the fit.

* Thenew SIGMA keyword to GAUSSFIT can be set to a named variable that
will contain the 1-sigma error estimates of a returned parameters.

Analysis Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 25

* Thenew CHISQ keyword to GAUSSFIT can be set to a named variable that
will contain the value of the chi-square goodness-of -fit.

For more information on these new keywords, see “GAUSSFIT” on page 114.

Enhancements to the MEDIAN Function

The new DIMENSION keyword to MEDIAN can be set to the dimension over which
to find the median values of an array.

For more information on this new keyword, see “MEDIAN” on page 117.

What's New in IDL 5.6 Analysis Enhancements

26

Chapter 1: Overview of New Features in IDL 5.6

Language Enhancements

Thefollowing enhancements have been made to the core of the IDL Language for the
5.6 release:

New Stride Syntax for Array Subscripts

New Shared Memory Support

New and Enhanced File Handling Routines

New SWAP_ENDIAN_INPLACE Procedure

New Keywords to SWAP_ENDIAN Function
Enhancements to the EXPAND_PATH Function
Enhancements to the MAKE_DLL Procedure

New STRICTARRSUBS Option to COMPILE_OPT
Large File Support for AIX and Linux Platforms
Large File Support For Compressed Files

64-bit Memory Support On More Platforms

Thread Pool and Multi-Threading Support On AIX and Mac OS X
Enhancements to the KEYWORD_SET Function

New Stride Syntax for Array Subscripts

You can now simplify your coding by specifying array subscript ranges using strides,
or subscripting increments. The syntax [ey:e;:e,] denotes every eyth element within
the range of subscripts e through e (ey must not be greater than e;). e, isreferred to
as the subscript stride. The stride value must be greater than or equal to 1. If itisset
to the value 1, the resulting subscript expression isidentical in meaning to [ey:€;], as
described above.

For example, if the variable VEC is a 50-element vector, VEC[5:13:2] isafive-
element vector composed of VEC[5], VECI[7], VEC[9], VEC[11], and VEC[13].

Language Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 27

The following table summarizes the possible forms of subscript ranges:

Form

Description

A simple subscript expression

€0:€1

Subscript range from e to e

€p:€1:€o

Subscript range from e to e, with astride of e,

All points from element e to end

All points from element ej to end with a stride of e,

All pointsin the dimension

Table 1-5: Subscript Ranges

For additional information, see Chapter 6, “Arrays’ in the Building IDL Applications

manual.
New Shared Mem

Four new IDL routines

ory Support

allow you to map anonymous shared memory, or local disk

files, into the memory address space of the currently executing IDL process. Mapped
memory segments are associated with an IDL array specified by the user.

Additionally, the new SHARED_MEMORY keyword to the HEL P procedure can be
used to display information about all current shared memory and memory mapped
file segments mapped into the current IDL process viathe SHMMAP procedure.

Shared Memory

Routine

Description

SHMDEBUG

Debugs shared memory problems.

SHMMAP

Maps memory or disk filesinto IDL’s
memory address space.

SHMUNMAP

Unmaps memory mapped with SHMMAP.

SHMVAR

Createsan IDL array variable that uses
memory from a mapped memory segment.

Table 1-6: Routines for Shared Memory Support

What's New in IDL 5.6

Language Enhancements

28

Warning

Chapter 1: Overview of New Features in IDL 5.6

Unlike most IDL functionality, incorrect use of the shared memory routines can
corrupt or even crash your IDL process. Proper use of these low level operating
system features requires systems programming experience, and is not recommended
for those without such experience. You should be familiar with the memory and file
mapping features of your operating system and the terminology used to describe

such features.

For more information, see “New IDL Routines’ on page 89.

New and Enhanced File Handling Routines

New file handling routinesin IDL 5.6 further enhance your ability to manipulate files

from within IDL.

Routine Description

COPY_LUN Copies data between two open files.

FILE_COPY Copiesfiles, or directories of files, to anew
location.

FILE_LINES Returns the number of lines of text contained
within the specified file or files.

FILE_LINK Creates UNIX filelinks, both regular (hard) and
symbolic.

FILE_ MOVE Renames files and directories.

FILE_READLINK

Returns the path pointed to by UNIX symbolic
links.

FILE_SAME Determines if two different file names refer to the
same underlying file.
SKIP_LUN Reads datain an open file and moves the file

pointer.

TRUNCATE_LUN

Truncates the contents of afile open for write
access at the current position of the file pointer.

Table 1-7: New IDL File Handling Routines

Language Enhancements

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 29

The FILE_DELETE procedure has been enhanced to allow for more control with
error reporting. Two new keywords have been added:

» ALLOW_NONEXISTENT — Quietly ignores attempts to delete a non-
existent file.

* VERBOSE — Issues informative messages for every file deleted.

For more information, see “New IDL Routines’ on page 89.
New SWAP_ ENDIAN_INPLACE Procedure

The new SWAP_ENDIAN_INPLACE procedure reverses the byte ordering of
arbitrary scalars, arrays or structures. It can make “big endian” numbers “little
endian” and vice-versa.

Note
The BY TEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN_INPLACE aso alows structures).

For more information, see “SWAP_ENDIAN_INPLACE” on page 447.
New Keywords to SWAP_ENDIAN Function

Two new keywords have been added to the SWAP_ENDIAN function:
SWAP_IF_BIG_ENDIAN and SWAP_IF_LITTLE_ENDIAN. These keywords add
the functionality available in the BY TEORDER routine to SWAP_ENDIAN.

For more information, see “SWAP_ENDIAN” on page 118.
Enhancements to the EXPAND_PATH Function

The EXPAND_PATH function has been enhanced to use the same expansion of the
path-definition string asis done by IDL when initializing the | PATH system variable
from the IDL_PATH environment variable at startup. This meansthat in addition to
expanding the“+" syntax in the path definition string, EXPAND_PATH al so properly
expands the special path-definition tokens<I DL_DEFAULT>, <I DL_BI N_DI RNAVE>,
and <I DL_VERS!| ON_DI RNAVE>.

Note
Thisfunctionality has also been added to the way path preferences are set in the
IDL Development Environment. See “ Changes to Path Preferences’ on page 39 for
details.

What's New in IDL 5.6 Language Enhancements

30 Chapter 1: Overview of New Features in IDL 5.6

Enhancements to the MAKE_DLL Procedure

If thenew REUSE_EXISTING keyword tothe MAKE_DLL procedureisset, and the
sharable library file specified by OutputFile already exists, MAKE_DLL returns
without building the sharable library again. Use this keyword in situations where you
wish to ensure that alibrary exists, but only want to build it if it does not. Combining
the REUSE_EXISTING and DLL_PATH keywords allows you to get a path to the
library in a platform independent manner, building the library only if necessary.

For more information on this keyword, see “MAKE_DLL"” on page 117.
New STRICTARRSUBS Option to COMPILE_OPT

The STRICTARRSUBS option has been added to the COMPILE_OPT statement.
When IDL subscripts one array using another array as the source of array indices, the
default behavior isto clip any out-of-rangeindicesinto range and then quietly usethe
resulting data without error. This behavior is described in “Array Subscripts’ in
Chapter 6 of the Building IDL Applications manual. Specifying STRICTARRSUBS
will instead cause IDL to treat such out-of-range array subscripts within the body of
the routine containing the COMPILE_OPT statement as an error. The position of the
STRICTARRSUBS option within the moduleis not important: all subscripting
operations within the entire body of the specified routine will be treated this way.

Large File Support for AlX and Linux Platforms

IDL 5.6 now supports accessing fileslarger than 2.1 GB on AlX and Linux. You now
can use the 64-bit integer data type to read and write data from files on the following
platforms that support the use of alarge file capable file system:

» Windows (with NTFS file system)

« AIX

e Linux

* SUN Solaris
e HP-UX
oSGl Irix

* Compag Tru64 UNIX

IDL setsthe !VERSION.FILE_OFFSET_BITS system variableto 64 on platforms
where it has large file support.

Language Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 31

Note for AIX Users

Customers attempting to use large file functionality under AIX need to be aware of
the following:

* By default, AIX imposes afile size limit of 2097151 512-byte blocks on all
processes. Thiswill limit the size of files you can access. One solution is to set
the fsize parameter in/ et c/ security/linits toalarger value, or -1to
remove the limit entirely. Users will have to log out and back in to see the
benefit of this change.

* By default, local AlX filesystems are not large file capable, and will refuse to
hold files larger than 2.1GB in length. This per-filesystem attribute is set when
the filesystem is created, and cannot be changed without destroying and re-
creating it.

Large File Support For Compressed Files

On platforms that support large files (!VERSION.FILE_OFFSET_BITSis64), IDL's
support for compressed files (COMPRESS keyword to OPEN or SAVE procedures)
isnow able to read and write compressed files of any length. In previous rel eases,
IDL's support for such files was 32-bit limited.

64-bit Memory Support On More Platforms

A 64-bit program is a program that uses 64-bit memory addresses. Such a program
has the ability to access extremely large amounts of memory, well beyond the 2.1GB
barrier that existsfor 32-bit programs. Previous to this release, 64-bit versions of IDL
were supported on the Solaris/Sparc and Compag Tru64 UNIX platforms. Other
versions of IDL were built as 32-bit programs and were limited to the 32-bit memory
addressthat implies. With IDL 5.6, theIBM AlX, SGI IRIX, and HP-UX versions are
also available in both 32- and 64-bit form (similar to Solaris/Sparc IDL which comes
in both 32- and 64-hit versions).

Thread Pool and Multi-Threading Support On AlX and
Mac OS X

Support for the IDL Thread Pool, which was first released in IDL 5.5, is now
supported on the AIX platform. It is also supported on the new Mac OS X platform.
The Thread Pool is now supported on all IDL platforms.

See Chapter 15, “Multithreading in IDL” in the Building IDL Applications manual
for more information.

What's New in IDL 5.6 Language Enhancements

32 Chapter 1: Overview of New Features in IDL 5.6

Enhancements to the KEYWORD_ SET Function

The KEYWORD_SET function returnstrue if its argument is defined and is nonzero,
and false (0) otherwise. The specific rules by which the value is determined are given
in the IDL Reference Guide. With IDL 5.6, there has been a small change to these
rules, designed to make KEYWORD_SET useful in alarger number of cases.
Previoudy, KEYWORD_SET would return true if it's argument was an array,
regardless of the value. This behavior has been changed: Arrays with more than 1
element are treated as before, but 1-element arrays are treated in the same way as
scalar arguments, and the value returned by KEYWORD_SET depends on the value
of the element.

Language Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 33

File Access Enhancements

The following enhancements have been made in the area of File Accessin the IDL
5.6 release:

* New Support for ITIFF

« New XML Parser Object

* New HDF5 Routines

* New H5 BROWSER Routine

e HDF and HDF-EOS Library Updates
» Enhanced Support for Shapefiles

New Support for ITIFF

IDL 5.6 now supports reading and writing TIFF files containing JPEG compression
(ITIFF). The READ_TIFF, WRITE_TIFF, and QUERY _TIFF routines now support
ITIFF. A new option has been added to the COMPRESSION keyword to the
WRITE_TIFF routine to support the creation of I TIFF files.

For more information, see “WRITE_TIFF’ on page 133.
New XML Parser Object

XML is“eXtensible Markup Language,” a popular standard for sharing data across
networks and on the World Wide Web. In IDL 5.6, the new IDLffXMLSAX object
classimplementsa SAX 2 XML parsing engine, ideal for extracting data from large
XML files. The new object class allows you to extract data from XML datafiles and
storeit in IDL data structures. See “IDLffXMLSAX object” on page 146 for a
description of the object class and its methods.

Using the XML parser requires that you write a custom subclass of the
IDLFFXMLSAX object class, overriding the superclass's method routines to read a
given XML file and store the data as necessary. See Chapter 4, “Using the XML
Parser Object Class’ for adetailed description of how to use the XML parser object
class.

What's New in IDL 5.6 File Access Enhancements

34

New HDF5 Routines

Chapter 1: Overview of New Features in IDL 5.6

You can now query and read HDF5 filesin IDL. This hierarchical datastorage format
was devel oped by the NCSA to address limitationsin HDF4. Several widely-used
data products are expected to be distributed in the HDF5 format, including data from
NASA's EOS Aura satellite. IDL continuesto support HDF4 as well.

The new HDF5 library of routinesin IDL 5.6 are in a dynamically-loadable module
(DLM) that provides access to the HDF5 library.

The IDL HDF5 library contains the following function categories:

Prefix Category Purpose
H5 Library Genera library tasks
H5A Attribute Manipul ate attribute datasets
H5D Dataset Manipulate general datasets
H5F File Create, open, and close files
H5G Group Handle groups of other groups or datasets
H5I Identifier Query object identifiers
H5R Reference Reference identifiers
H5S Dataspace Handl e dataspace dimensions and selection
H5T Datatype Handle datatype element information

Table 1-8: HDF 5 Function Categories

For more information, see Chapter 3, “New IDL Routines’.

File Access Enhancements

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 35

New H5 BROWSER Routine

The new H5_BROWSER presents agraphical user interface for viewing and reading
HDFS5 files. The browser provides atree view of the HDF5 file or files, a data
preview window, and an information window for the selected objects. The browser
may be created as either a selection dialog with Open/Cancel buttons, or asa
standal one browser that can import data to the IDL main program level.

@1 HDF5 Browser (0] =]

= [« B4+
= #% [v'\Frogram Files\IDLMDLSE \examples\dal s\hdiS_tes
O 20 int aray

O & note
(£] 5Lto 20 ink amay

=& airays

0B 20 Nlost array

o 20 ink aay

qﬂ 30 ink amay

=) U data wath mived ypes

[# Chatacter
B Sheat
8] Imeger
] Float
[E] String
[E] Iriteges Aray
(] Flost Aray
/A HDF4_OBJECT_TYFE
A HDF4_OBJECT_MAME
A HDF&_REF_MUM

= B datalypes Datasel, Tceberg =]
B9 A Native float deislupe HET_INTEGER [1 byte: unsigned)
ﬁ A Sinng dalatype B‘mmm 3
4 #57 Ai pressure D;ﬁ:m [375, 375]
= & images [2. 104, 135, 33, 156, 14, 49, 72, 33,33...]
=1 W E skimo
= 08 Ekime_paletie =l
=191 lceberg
4 B iceberg_patatte Variable nama for impart:
=& Inks [|CEBERG
#-E0 had links
solt links ¥ Include data
- | ingattol0L | Dore |

Figure 1-2: The New HDF 5 Browser

For more information, see “H5_BROWSER” on page 214.

What's New in IDL 5.6 File Access Enhancements

36 Chapter 1: Overview of New Features in IDL 5.6

HDF and HDF-EOS Library Updates

IDL 5.6 now supportsthe current versions of the HDF4 and HDF-EOS libraries. HDF
is now supported to version 4.1r5 and HDF-EOS is now supported to version 2.8.

Note
On the AIX platform, the HDF and HDF-EOS libraries were not updated. They
remain at 4.1r3 for HDF and 2.4.

Enhanced Support for Shapefiles

IDL 5.6 now alows you to access the dBASE table (.dbf) component of a shapefile
without opening any other components of the shapefile.

For more information, see “IDL Object Method Enhancements” on page 61.

File Access Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 37

Mapping Enhancements

The list of map projection types available in IDL has been greatly expanded with the
addition of the USGS General Cartographic Transformation Package. New routines

allow you to set up projections, transform coordinates between projections, and split
and clip polygons and polylinesto fit your map.

MAP_PROJ_INIT Function

The MAP_PROJ INIT function establishes the coordinate conversion mechanism for
mapping points on a globe's surface to points on a plane, according to either one of
the IDL projections or one of the General Cartographic Transformation Package
(GCTP) map projections. Unlike MAP_SET, thisfunction does not modify the ! MAP
system variable, but rather returns a!MAP structure variable that can be used by the
map transformation functions MAP_PROJ FORWARD and MAP_PROJ INVERSE.

For more information, see “MAP_PROJ_INIT” on page 396.
MAP_PROJ_FORWARD, and MAP_PROJ_INVERSE Functions

These functions transform map coordinates between latitude/longitude and Cartesian
(X, Y) coordinates. Both functions can use the map transformation values from either
the IMAP system variable or a!MAP structure created by MAP_PROJ_INIT.

See “MAP_PROJ FORWARD” on page 391 and “MAP_PROJ _INVERSE” on
page 412 for details.

What's New in IDL 5.6 Mapping Enhancements

38 Chapter 1: Overview of New Features in IDL 5.6

IDLDE Enhancements

The IDL Development Environment has been enhanced in the following ways for the
5.6 release:

e Copying and Pasting Multiple IDL Code Lines
e Block Comments

e Changesto Path Preferences
Copying and Pasting Multiple IDL Code Lines

IDL 5.6 for Windows now offers the ability to paste multiple lines of text from the
clipboard to the command line. This functionality has been available in previous
versions for the UNIX IDLDE. The multi-line command line paste functionality is
simpleto use. Aswith the earlier IDLDE, the user needs to merely place sometextin
the clipboard and paste it into the command line. Any source of text isvalid, with
emphasis on the requirement that the text be convertible to ASCII. When copying text
from an I DE editor, the selection mode can be stream, line, or box.

Note
Line and box modes automatically put atrailing carriage return at the end of the
text. When pasted, the last line is executed.

The new functionality should only be used with IDL commands that are contained on
one line each, which includes statements that utilize continuation markers ($). Multi-
line statements will produce unintended IDL interpreter behavior or errors.

Lines are transferred to the command line as is. Namely, leading white space is not
removed and comment lines are sent to the IDL interpreter without distinction.

Note
Tabs are converted to white space based on the tab size indicated by the IDE editor
preferences.

IDLDE Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 39

Block Comments

InIDL 5.6, the text editor in the IDLDE has been improved to alow quick
commenting and uncommenting of code blocks. Previousy, comments had to be
manually entered using the comment symbol, line by line. To comment lines of code,
you may either select the entire block of uncommented lines to be commented or you
may simply places the cursor somewhere on the desired line. Commenting and
uncommenting can be performed using:

e TheEdit -~ Comment or Edit — Uncomment menu items
 ThelIDL Editor window's context menu
e Thetoolbar

1%

Figure 1-3: Comment (left) and Uncomment (right) Toolbar Icons

Changes to Path Preferences

The path preferences mechanism used by the IDLDE has been modified in this
release.

The IDLDE Path Preferences dialog now uses the same mechanism to expand the
elements of the IDL File Search Path field asis used by the EXPAND_PATH
function. By default, thisfield is populated with asingle entry: <I DL_DEFAULT>. If
the IDL_PATH environment variable is not set when the IDLDE starts up, it will
expand this token into the default value of the |PATH system variable.

Note
If you have set the IDL_PATH environment variable, IDL will set the |PATH system
variable based on the contents of the IDL_PATH environment variable at startup,
overriding any settings made in the Path Preferences dialog. However, after IDL
has started, you can modify the current value of the 'PATH system variable using
thisdialog. See “!PATH” in the IDL Reference Guide manual for additional details
on how !'PATH is set.

What's New in IDL 5.6 IDLDE Enhancements

40

Chapter 1: Overview of New Features in IDL 5.6

Setting Path Preferences

If the box to the |eft of a path element in the Path Preferences dialog is checked, all
directories below the listed directory that contain at least one . pr o or . sav file will
beincluded in the !PATH system variable. (This mechanism is analogous to the use of
a“+” symbol in an EXPAND_PATH path definition string.)

Note

If the <I DL_DEFAULT> entry is present, the box to its left is greyed out, indicating
that the token will always be expanded.

You can modify the value of the !PATH system variable in the following ways using
this dialog:

Changethe order of the path elements— using the up- and down-arrows,
you can reorder the path elements. When searching the directoriesin the
IPATH system variable for files, IDL will use the first matching fileit finds. If
you have multiple files with the same name in different directories within
IPATH, you may need to adjust the order in which the directories are scanned.

Insert... — To add a path to the IDL Files Search Path list, click on Insert...
to display the Select Path dialog. The new path is inserted before the first
selected path. If none of the paths are selected, the new path is appended to the
end of thelist.

Insert Standard Libraries— Click Insert Standard Librariesto insert the
<| DL_DEFAULT> path element into the list.

Remove — Click on Remove to delete the selected path.

Expand — Click on Expand to include the individua subdirectories of the
selected path element in the Files Search Path list. When you click Expand,
the checkmark is removed from the original path element, since the
subdirectories are now explicitly included in the path search list.

IDLDE Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 41

IDL GUIBuilder Enhancements

The following enhancements have been made to the IDL GUIBuilder in IDL 5.6. For
more information on how to use these new features, see Chapter 23, “Using the
IDL GUIBuilder” in the Building IDL Applications manual.

Support for Tab Widget

The new tab widget is available for inclusion in interfaces built with the GUIBuilder.
Support for Tree Widget

The new tree widget isavailable for inclusion in interfaces built with the GUIBUilder.
Support for Context Events

Event handlers for context events (triggered when the user clicks the right-hand
mouse button) have been added to the property sheets for the base, ligt, text, and tree
widgets.

Support for Tooltips

Support for tooltips has been added to the property sheets for the button and draw
widgets.

Support for Checked Menu Items

Support for checked menu items has been added to the menu editor.
Support for Sunken Labels

Support for sunken labels has been added to the property sheet for the label widget.
Support for Move, Iconify, and Size Events for Base Widgets

Support for move, iconify, and size events has been added to the property sheet for
the base widget.

Support for Keyboard Events for Draw Widget

Support for keyboard events has been added to the property sheet for the draw
widget.

What's New in IDL 5.6 IDL GUIBuilder Enhancements

42 Chapter 1: Overview of New Features in IDL 5.6

User Interface Toolkit Enhancements

The following enhancements have been madeto IDL’'s Ul toolkit for the 5.6 release to
help you give your IDL applications more powerful and friendly user interfaces:

* New COM Functionality

* New Combobox Widget

* New Tab Widget

* New Tree Widget

» Table Widget Enhancements

* Move, Iconify, Size Eventsfor Base Widgets
» Color Bitmap Buttons from Array Data
* Push and Toggle Buttons

* Checkmarks on Menu Buttons

» Tooltipsfor Button and Draw Widgets
» Keyboard Events for Draw Widgets

» Scrolling Draw Widget Enhancements
» Label Widget Enhancements

e Enhancementsto WIDGET _INFO

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 43

New COM Functionality

The IDLcomlDispatch object class and its use are now described in detail in “Using
COM Objectsin IDL” in Chapter 4 of the External Development Guide manual. The
IDL coml Dispatch object has been enhanced in the following ways:

Support for Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is now passed along to COM object methods called on

IDLcoml Dispatch objects, and to the | DL.coml Dispatch:: GetProperty method. This
means that if an argument is not required by the underlying COM object method, it
can be omitted from the method call used on the | DLcoml Dispatch object.

Support for Default Values

COM adlows objects to specify a default value for any method arguments that are
optional. If acall to amethod that has an optional argument with adefault value omits
the optional argument, the default valueisused. IDL now behavesin the same way as
COM when calling COM object methods on I DL comlDispatch objects, and when
calling the IDLcomIDispatch::GetProperty method.

Support for Argument Skipping

COM allows methods with optional arguments to accept asubset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL now provides the same functionality for COM object methods called on
IDLcoml Dispatch objects, but not for the I DL coml Dispatch::GetProperty or
SetProperty methods.

Support for Function Return Values

Theoriginal IDL COM subsystem managed function return values through the use of
an extra parameter added to the method call. With the addition of optional arguments,
this method for retrieving return valuesisno longer valid. IDL now handles function
return values from COM function methods in the same way as IDL functions, using
the syntax:

Resul t = oCOM >Met hod(argl, arg2)

What's New in IDL 5.6 User Interface Toolkit Enhancements

44 Chapter 1: Overview of New Features in IDL 5.6

Additional COM Type Mappings
Support for the following COM data types has been added:

COM Type IDL Type
BOOL (VT_BOOL) Byte (true =1, false=0)
ERROR (VT_ERROR) Long
CY (VT_CY) Long64
DATE (VT_DATE) Double
11(VT_I1) Byte
INT (VT_INT) Long
UINT (VT_UINT) Unsigned Long
VT_USERDEFINED The IDL typeis passed through.

Table 1-9: New IDL-COM Data Type Mappings
New Combobox Widget

Thenew WIDGET_COMBOBOX function creates comboboxes, which are similar to
droplists. The main difference between the combobox widget and the droplist widget
isthat the combobox widget has an editable text field allowing a value to be entered
that isnot in thelist.

Figure 1-4: Combobox Created Using the New WIDGET_COMBOBOX Function

For more information, see “WIDGET_COMBOBOX” on page 451.

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 45

Note
WIDGET_COMBOBOX is not currently available on Compag True64 UNIX
platforms due to that platform’s lack of support for the necessary Motif libraries.

New Tab Widget

The new WIDGET_TAB function is used to create a tab widget. Tab widgets present
adisplay areaon which different pages (base widgets and their children) can be
displayed by selecting the appropriate tab. Thetitles of the tabs are the values of the
TITLE keyword for each of the tag widget's child base widgets.

Text Style | Lire: Syl I .ﬁ.dvancedl

Font Mame

I Helvetica j

Figure 1-5: Tabs Created Using the New WIDGET_TAB Function
For more information, see “WIDGET_TAB” on page 459.
New Tree Widget

The new WIDGET_TREE function is used to create and popul ate a tree widget. The
tree widget presents a hierarchical view that can be used to organize awide variety of
data structures and information.

81 Trec ampleMI=IF3
EIE Branch 1

Lo Leaf 1-1

B3 Branch1-2

i g Branch 2

Figure 1-6: A Tree Widget Created Using the New WIDGET_TREE Function

For more information, see “WIDGET_TREE” on page 467.

What's New in IDL 5.6 User Interface Toolkit Enhancements

46 Chapter 1: Overview of New Features in IDL 5.6

Table Widget Enhancements

The table widget has been enhanced in the following ways:
Disjoint Cell Selection

Table widgets can now be configured to allow selection of multiple disjoint
rectangular groups of cells.

* UsetheDISIOINT_SELECTION keyword to WIDGET_TABLE to create a
table with this behavior. For more information on this new keyword, see
“WIDGET_TABLE" on page 133.

* Usethenew TABLE_DISJOINT_SELECTION keyword to
WIDGET_CONTROL to change the state of an existing table. For more
information on this new keyword, see “WIDGET_CONTROL” on page 121.

* Usethenew TABLE_DISJOINT_ SELECTION keyword to WIDGET_INFO
to determine the current state of an existing table. For more information on this
new keyword, see “WIDGET_INFO” on page 129.

Note
If the USE_TABLE_SELECT keyword to WIDGET_CONTROL is set, the values
returned or expected by the following keywords are modified by the sel ection mode:
ALIGNMENT, COLUMN _WIDTHS, DELETE COLUMNS, DELETE_ROWS,
FORMAT, GET_VALUE, ROW_HEIGHTS, and SET_VALUE.

For more on table selection modes, see “Using Table Widgets’ in Chapter 26 of the
Building IDL Applications manual.

New Deselection Event

A new event (TYPE = 9) is generated by the table widget when selected cells are de-
selected by the user and the tableisin digjoint selection mode. This event’s structure
isidentical tothe WIDGET_TABLE_CELL_SEL event structure (TY PE = 4) except
for the name and type va ue.

This event occurs when the user holds down the Control key when starting a
selection and the cell used to start the selection already selected. In contrast, if the
user starts a selection with the Control key down but starts on a cell that is not
selected, the normal WIDGET_TABLE_CELL_SEL event is generated.

{W DGET_TABLE_CELL_DESEL, |D:0OL, TOP:0L, HANDLER:OL, TYPE: 9,
SEL_LEFT: OL, SEL_TOP: OL, SEL_RIGHT: 0L, SEL_BOTTOM OL}

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 a7

The range of cells selected is given by the zero-based indices into the table specified
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields.

Cell Selection and Edit Mode

The mechanisms by which an individual table cell is placed in edit mode (that is,
made available for interactive editing by the user) have been enhanced to be easier to
use. For example, selecting a cell for editing now automatically selects the cell’s
contents and positions the cursor to theright of the text.

For acompletelist of user actions and their effects on cell selection and edit mode,
see “Using Table Widgets” in Chapter 26 of the Building IDL Applications manual.

Blanking Table Cells
Usethenew TABLE_BLANK keyword to WIDGET_CONTROL to causetablecells
to be blanked or restored programmatically.

For more information on this new keyword, see “WIDGET_CONTROL” on
page 121.

Move, Iconify, Size Events for Base Widgets

Top-level base widgets can now be configured to generate events when the base is
moved or iconified. Additionally, an existing base can now be reconfigured to modify
the resize event after creation.

For more information on the new keywords described below, see “IDL Routine
Enhancements’ on page 111.

Move Events

Top-level widget bases return the following event structure when the base is moved
and the base was created with thenew TLB_MOVE_EVENTS keyword set:

{ WDGET_TLB_MOVE, |D:0OL, TOP:0L, HANDLER:OL, X: OL, Y:OL }

ID isthewidget ID of the base generating the event. TOP isthe widget ID of the top
level widget containing the base generating the event. HANDLER contains the
widget 1D of the widget associated with the handler routine. X and Y are the new
location of the top left corner of the base.

Note
Move events are generated only when the mouse button is released.

What's New in IDL 5.6 User Interface Toolkit Enhancements

48

Chapter 1: Overview of New Features in IDL 5.6

Note
If bothTLB_SIZE EVENTSand TLB_MOVE_EVENTSareenabled, auser resize

operation that causes the top left corner of the base to move will generate both a
move event and aresize event.

Thenew TLB_MOVE_EVENTS keyword to WIDGET_CONTROL alows you to
change this setting after the base widget has been created.

Thenew TLB_MOVE_EVENTS keyword to WIDGET_INFO allows you to
determine the current setting.

Iconify Events

Top-level widget bases return the following event structure when the baseisiconified
or restored and the base was created with the TLB_ICONIFY_EVENTS keyword
Set:

{ WDGET_TLB_| CONI FY, I1D:0L, TOP:0OL, HANDLER OL, | CONIFIED: 0 }
ID isthewidget ID of the base generating the event. TOP isthe widget ID of the top
level widget containing ID. HANDLER contains the widget 1D of the widget

associated with the handler routine. ICONIFIED is 1 (one) if the user iconified the
base and 0 (zero) if the user restored the base.

The TLB_ICONIFY_EVENTS keyword to WIDGET_CONTROL alowsyou to
change this setting after the base widget has been created.

The TLB_ICONIFY_EVENTSkeyword to WIDGET_INFO allowsyou to determine
the current setting.

Resize Events

In previous releases, you could use the TLB_SIZE_EVENTS keyword to
WIDGET_BASE to configure the base widget to generate events when the user
resized the widget. IDL 5.6 addsthe TLB_SIZE _EVENTS keyword to
WIDGET_CONTROL to allow you to change this setting after the base widget has
been created.

The TLB_SIZE _EVENTS keyword to WIDGET_INFO alows you to determine the
current setting.

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 49

Color Bitmap Buttons from Array Data

In previous versions of IDL, the data for abitmap to be placed on a button widget
could be specified either by setting the VALUE keyword to WIDGET_BUTTON
equal to the name of an image file (and specifying the BITMAP keyword) or by
setting the VALUE keyword equal to an n x marray of black-and-white bitmap
values. In addition to these two methods, you can now set the VALUE keyword equal
to an n x mx 3 byte array, which displays as a 24-bit color bitmap image.

You can produce appropriate color bitmap arraysin IDL in the following ways:

» Create a24-hit color image using an external bitmap editor, and read it into an
IDL byte array using the appropriate procedure (READ_BMP, READ_JPEG,
etc.). Theimage array must beinterleaved by plane (n x mx 3), with the planes
in the order of red, green, and blue.

Note
Imagefiles created by image editors are often interleaved by pixel rather than
by plane. You can use the TRANSPOSE function to reformat the array.

READ BMP(' bitmap_file.bnp', /RGB)
TRANSPOSE(butt on_i mage, [1,2,0])

button_i mage
button_i mage

button = WDGET_BUTTON(base, VALUE = button_i nage)

» Create an n x mx 3 byte array using the BY TARR function and modify the
array elements using array operations.

Although IDL places no restriction on the size of bitmap allowed, other operating
system windowing toolkits IDL interfaces with may prefer certain sizes.

Push and Toggle Buttons

In previous releases, setting the EXCLUSIVE or NONEXCLUSIVE keyword to
WIDGET_BASE did not produce the correct visual behavior when the base
contained bitmap buttons. In IDL 5.6, bitmap buttons on EXCLUSIVE and
NONEXCLUSIVE bases appear selected or unselected in the same manner as
buttons with text |abels.

In addition, the TOOLBAR keyword to WIDGET_BASE has been added. Setting
this keyword does not cause any changesin behavior. Itsonly affect isto slightly alter
the appearance of the bitmap buttons on the base for cosmetic reasons.

What's New in IDL 5.6 User Interface Toolkit Enhancements

50 Chapter 1: Overview of New Features in IDL 5.6

On Motif platforms, if bitmap buttons are on abase created with TOOLBAR and
either the EXCLUSIVE or NONEXCLUSIVE keywords set, the buttons will not
have a separate toggle indicator, they will be grouped closely together, and will have
atwo-pixel shadow border.

Setting TOOLBAR has no effect on Windows platforms.

Checkmarks on Menu Buttons

Button widgets on menus can now have a checkmark placed next to the button label.
Use the CHECKED_MENU keyword to WIDGET_BUTTON to place a check mark
next to the button label when the button is created. Use the SET_BUTTON keyword
to WIDGET_CONTROL to change the state of the checkmark after creation. Use the
BUTTON_SET keyword to WIDGET_INFO to determine the current state of the
checkmark on a given button widget.

Note
To be considered a menu button, the button must have asits parent either a button

widget created with the MENU keyword or abase widget created with the
CONTEXT_MENU keyword.

Tooltips for Button and Draw Widgets

Button and draw widgets can now be configured to display atext tooltip when the
mouse cursor hovers over the button or drawable area for a few seconds. Use the
TOOLTIP keyword to WIDGET_BUTTON or WIDGET_DRAW to specify the text
when the widget is created. Use the TOOLTIP keyword to WIDGET_CONTROL to
change the text after the widget has been created. Use the TOOLTIP keyword to
WIDGET_INFO to retrieve the current text.

oy

Figure 1-7: A Tooltip With a Button Widget

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 51

Keyboard Events for Draw Widgets

Draw widgets can now be configured to generate events when the draw widget has
the keyboard focus and akeyboard key is pressed. The event structure returned by the
WIDGET_EVENT function is now defined by the following statement:
{WDGET_DRAW |D: 0L, TOP:0OL, HANDLER OL, TYPE: 0, X: 0L, Y:OL,
PRESS: 0B, RELEASE: 0B, CLICKS:0, MODI Fl ERS: OL, CH 0, KEY:OL }
The TY PE field of the WIDGET_DRAW event structure has been modified to report
the following additional values:

Value Meaning
5 Key Press (ASCII character value reported in CH field)
6 Key Press (Non-ASCII key valuereported in KEY field)

Table 1-10: Values to the TYPE Field for WIDGET_DRAW

Keyboard events are generated with the value of the TY PE field equal to 5 or 6. If the
event was generated by an ASCII keyboard character, the TY PE field will be set to 5
and the ASCII value of the key will be returned in the CH field. ASCII values can be
converted to the string representing the character using the IDL STRING routine. If
the event was generated due to anon-ASCI| keyboard character, the type of the event
will be set to 6 and anumeric value representing the key will be returned in the KEY
field. The table below lists the possible values of the KEY field.

Key values reported in the KEY field for the Shift, Control, Caps L ock, and Alt
keys are not the same as those reported in the MODIFIER field bit mask, since the
KEY field isnot a bitmask.

Key Field Value Keyboard Key

Shift

Control

Caps Lock
Alt
Left

a|l bl W[l DN| P

Table 1-11: Key Field Values for the KEY Field for WIDGET_DRAW

What's New in IDL 5.6 User Interface Toolkit Enhancements

52 Chapter 1: Overview of New Features in IDL 5.6

Key Field Value | Keyboard Key
6 Right
7 Up
8 Down
9 Page Up
10 Page Down
11 Home
12 End

Table 1-11: Key Field Values for the KEY Field for WIDGET_DRAW

Keyboard events are enabled using the KEYBOARD_EVENTS keyword to
WIDGET_DRAW or the DRAW_KEYBOARD_EVENTS keyword to
WIDGET_CONTROL. The DRAW_KEYBOARD_EVENTS keyword to
WIDGET_INFO allows you to determine the current setting.

Scrolling Draw Widget Enhancements

Inprior releases of IDL, the use of the APP_SCROLL keyword to WIDGET_DRAW
caused the draw widget to be created with VIEWPORT_EVENTS =1, RETAIN =0,
and EXPOSE_EVENTS = 1 regardless of the settings of these three keywords. As a
result, if APP_SCROLL was set, you had to explicitly refresh the display when an
expose event occurred.

InIDL version 5.6, for draw widgets that use Direct Graphics for their drawable
areas, the settings for RETAIN and EXPOSE_EVENTS have been de-coupled from
the setting of APP_SCROLL. This allowsyou to create a scrolling draw widget that
can refresh an obscured part of the viewport from backing store. Since arefresh from
backing store redraws only the newly-exposed portion of the viewport, aperformance
improvement may occur when backing storeis used. (In prior releases, the viewport
had to be redrawn in its entirety when the event handler received an expose event.)

Note
Draw widgets that use Object Graphics for their drawable areas are not affected by
this change. If adraw widget uses Object Graphics and sets the APP_SCROL L
keyword, IDL continuesto behave as if RETAIN=0 and EXPOSE_EVENTS=1.

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 53

If adraw widget is created with APP_SCROLL set and RETAIN issetto 1 or 2, no
expose events will be generated since the viewport will be refreshed from the backing
store. If RETAIN is not set, the standard IDL default of RETAIN = 1 applies.

If you have existing code that sets APP_SCROLL = 1, RETAIN = 0 but does not set
EXPOSE_EVENTS, the code will no longer refresh the viewport because the retain
setting is maintained but expose events will not be generated. Code with these
settings will need to be modified in one of the following ways:

* Removethe RETAIN = 0 setting. Which will cause IDL to use the default
setting of RETAIN = 1, which makes use of the system backing store.

* Change RETAIN = 0to RETAIN = 1. Which will explicitly specify that the
system backing store be used.

* Change RETAIN = 0to RETAIN = 2. Which will explicitly specify that IDL
provide backing store.

* Leave RETAIN =0 and set EXPOSE_EVENTS = 1. Which will restore the
previous behavior, alowing you to explicitly handle expose eventsin an event-
handling routine.

Note
The use of APP_SCROLL =1 till causes viewport events to be generated
regardless of the setting of the VIEWPORT_EVENTS keyword, since handling
viewport eventsis fundamental to the use of ascrolling draw widget.

Label Widget Enhancements
The SUNKEN_FRAME keyword to WIDGET_LABEL has been added to create a

three dimensional, bevelled border around the label widget. The resulting frame gives
the label a sunken appearance, similar to what is often seen in application status bars.

@lioL M=l E3

Maon-Sunken Label

Sunken Label

Figure 1-8: Sunken and Non-Sunken Labels

What's New in IDL 5.6 User Interface Toolkit Enhancements

54 Chapter 1: Overview of New Features in IDL 5.6

Enhancements to WIDGET _INFO

In addition to the enhancements to the WIDGET _INFO routine described above, the
following new keywords have been added:

Keyword Description

FONTNAME Set this keyword to return a string containing the name of the
font being used by the specified widget. The returned name
can then be used when creating other widgets or with the
SET_FONT keyword to the DEVICE procedure.

MAP Set this keyword to return True (1) if the widget specified by
Widget_ID is mapped (visible), or False (0) otherwise. Note
that when a base widget is unmapped, al of its children are
unmapped. If WIDGET _INFO reportsthat a particular widget
is unmapped, it may be because a parent in the widget
hierarchy has been unmapped.

SENSITIVE Set this keyword to return True (1) if the widget specified by
Widget_ID is sensitive (enabled), or False (0) otherwise. Note
that when a base is made insensitive, all its children are made
insensitive. If WIDGET _INFO reports that a particular widget
isinsensitive, it may be because a parent in the widget
hierarchy has been made insensitive.

VISIBLE Set this keyword to return True (1) if the widget specified by
Widget_ID isvisible, or False (0) otherwise. A widget is
visgbleif:

* |t has been realized.

* Itanddl of its ancestors are mapped.

Table 1-12: New WIDGET_INFO Keywords

User Interface Toolkit Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 55

New Personal Use Licensing

New with IDL 5.6, an IDL Persona Use Licenseis associated with a designated user,
not with a specific hardware device, so licenses can be easily moved. With aPersonal
Use License, RSI customers may usetheir IDL licensein their office, lab, on alaptop
computer, and even at home. The Personal Use License option will allow asingle,
named individual to install and license IDL on up to four (4) separate computer
systems that share a common operating system, aslong as the license isonly used on
asingle computer at any one time. Available platformsinclude Windows, Linux and
Mac OS X. RSl will continue to offer Node-L ocked and Network Floating licenses
for IDL.

What's New in IDL 5.6 New Personal Use Licensing

56

Chapter 1: Overview of New Features in IDL 5.6

New Support for Macintosh OS X

IDL 5.6 now supports the OS X operating system for Macintosh platforms. Important
information about this release:

Mac OS X isbased on a UNIX operating system named Darwin. IDL 5.6 has
been released upon Darwin. All standard UNIX features are available on the
Macintosh OS X version of IDL, including multi-processor support with the
IDL Thread Pool.

IDL 5.6 for OS X does not run in any emulation mode. Itisafully native
version of IDL. All GUI and graphical output are produced as X 11 graphics.

IDL 5.6 for OS X requires X Free86 version 4.2 (XDarwin 1.0.6.). This
package supplements the Macintosh Quartz/Aqua window system with the
ability to display X window graphics. This version has been included on your
IDL 5.6 product CD.

IDL 5.6 for OS X will look similar to the UNIX Motif interface. With the
addition of the OroborOSX window manager, included on your IDL 5.6
product CD, you can enhance the Xwindow dressings to have the ook and feel
of the standard Aquainterface.

Although the interface does not have the Aqualook and fedl, the X11 interface
does provide some unique advantages:

* MacOSX IDL isinstalled and administered identically to any other UNIX
installation. It can be part of a multi-platform installation of IDL, and it
can be located on aremote server.

* Asan X11 program, IDL can display its graphics on any remote X11
display on a network, including non-Apple systems.

* IDL for Mac OS X supports Altivec to the same level as previous
Macintosh IDL versions.

IDL for Mac OS X supports node-locked, floating, and the new Personal Use
style of licensing.

New Support for Macintosh OS X What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 57

Documentation Enhancements

I'n addition to documentation for new and enhanced IDL features, the following
enhancements to the IDL documentation set are included in the 5.6 release:

* New Image Processing in IDL Manual

« Revised and Enhanced External Development Guide
* Revised Graphica User Interface Documentation

e Version History in Reference Documentation

*« New Online Help Systems
New Image Processing in IDL Manual

The new Image Processing in IDL manual introduces you to the full image
processing power of IDL, describing how to display, manipulate, and extract
information from images. Topics include:

* Working with color
» Texture mapping and Warping
* Applying transforms
* Applying filters
* Using morphological operators
This manual features both Direct Graphics and Object Graphics examples that will
aid in developing IDL applications that require image processing.
Revised Graphical User Interface Documentation

“Part V: Creating Graphical User Interfacesin IDL” in the Building IDL Applications
manual has been revised. Chapter 23, “Using the IDL GUIBUuilder” has been updated
with the changes made in this rel ease and the “Widgets® chapter has been revised,
rewritten, and broken into three chapters:

e Chapter 24, “Widgets’
* Chapter 25, “Creating Widget Applications’
e Chapter 26, “Widget Application Techniques’

What's New in IDL 5.6 Documentation Enhancements

58 Chapter 1: Overview of New Features in IDL 5.6

Revised and Enhanced External Development Guide

The External Devel opment Guide has been extensively updated to include features
introduced in recent releases. Of particular note are the following chapters:

e Chapter 3, “Overview: COM and ActiveX inIDL”
e Chapter 4, “Using COM Objectsin IDL”
e Chapter 5, “Using ActiveX Controlsin IDL”

* Chapter 8, “CALL_EXTERNAL” (with emphasis on the AUTO_GLUE
mechanism)

Version History in Reference Documentation

Documentation for routines and objectsin the IDL Reference Guide, the Scientific
Data Formats manual, and the IDL DataMiner Guide, and the Online Help now
include a section describing when the routine was first included in IDL.

New Online Help Systems

Windows versions of IDL now use the Microsoft HTML Help viewer (based on
Internet Explorer) to display help in Windows HTML Help format. In addition, the
entire IDL documentation set is available in PDF format.

UNIX versions of IDL now use the Adobe Acrobat Reader software to display a set
of hyperlinked Adobe Portable Document Format (PDF) files.

IDL no longer uses the Bristol HyperHelp viewer to provide online help for UNIX
platforms. Instead, it now uses the free Adobe Acrobat Reader. Acrobat Reader
version 3 or higher must be installed on your system, and the corresponding acroread
command must be available from your Unix PATH environment variable. Acrobat
reader is available from www.adobe.com aswell asyou IDL product CD-ROM.
Acrobat Reader has many advantages:

» Output is publication quality, and printing is well supported.

* No cross platform issues: PDF is the same no matter where it is viewed.

» Tables and Figures ook exactly as they appear in the published manuals.

» Supports hypertext style links, just as with HyperHelp, both within the current
document and between documents.

* PDFfiles (the Acrobat format) are generated automatically from our books
without the need for manual proofreading.

Documentation Enhancements What's New in IDL 5.6

http://www.adobe.com

Chapter 1: Overview of New Features in IDL 5.6 59

» The Acrobat Reader isfreely available, and the use of the PDF format is
widespread.

* In comparison to HyperHelp, Acrobat is an industry standard, and tools for
producing PDF are available.

Significant time and effort were dedicated to identifying the best replacement for
Bristol HyperHelp. While providing HTML online help using standard Web browsers
was considered, the requirements of publication quality documentation led to the
conclusion that the use of PDF is a superior fit for the IDL online help system.
Benefits include more consistent formatting of tables and figures, quality printed
output, and the lack of browser incompatibility issues.

Mechanismsfor using the new help systemsfrom within user-written applications are
discussed in Chapter 20, “Providing Online Help For Your Application” in the
Building IDL Applications manual.

Changes to ONLINE_HELP and the “?” Command

The ONLINE_HELP procedure and ? command have been modified in the following
ways:

* OnUNIX platforms, IDL usesthe Adobe Acrobat Reader to display IDL’s
online help files.

* On Windows platforms, IDL uses Microsoft HTML Help to display IDL's
online help files.

* OnUNIX platforms, ONLINE_HELP can open an appropriate viewer and
display filesin Adobe Portable Document Format (PDF), or HTML format.

e On Windows platforms, ONLINE_HEL P can open an appropriate viewer and
display filesin HTML Help, WinHelp, Adobe Portable Document Format
(PDF), or HTML format.

Note
If you have created custom Help files using Bristol HyperHelp, you will no longer
be able to access them using the ONLINE_HEL P procedure.

For more information, see “ONLINE_HELP” in the IDL Reference Guide manual.

What's New in IDL 5.6 Documentation Enhancements

60 Chapter 1: Overview of New Features in IDL 5.6

New and Enhanced IDL Objects

This section describes the following:
« New IDL Object Classes
* New IDL Object Methods
* |DL Object Method Enhancements

New IDL Object Classes

The following table describes the new object classesin IDL 5.5 for Windows.

New Object Class Description

IDLffXMLSAX AnIDLffXMLSAX object usesan XML SAX
level 2 parser. The XML parser allows you to
read an XML file and store arbitrary datafrom
thefilein IDL variables. The parser abject’s
methods are callbacks. These methods are
called automatically when the parser
encounters different types of XML elements
or attributes.

New IDL Object Methods

New and existing IDL Object Graphics classes have been updated to include the
following new methods:

New Method Description

IDLgrContour::GetL abellnfo The IDLgrContour::GetL abelInfo procedure
method retrieves information about the labels
for the contour. The returned information is
only valid until the next time the

C _LABEL_INTERVAL or
C_LABEL_OBJECTS property is modified
viathe IDLgrContour:: SetProperty method, or
the offsets are adjusted via
IDLgrContour::AdjustL abel Of fsets.

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 61

IDL Object Method Enhancements

The following table describes new and updated keywords and arguments to IDL
object methods.

IDLanROI::ComputeMask

Iltem Description

RUN_LENGTH Set this keyword to a non-zero value to return
arun-length encoded representation of the
mask, stored in a one-dimensional unsigned
long array. When run-length encoded, each
element with an even subscript contains the
length of the run, and the following element
contains the starting index of the run.

IDLanROIGroup::ComputeMask

Iltem Description

RUN_LENGTH Set this keyword to a non-zero value to return
arun-length encoded representation of the
mask, stored in a one-dimensional unsigned
long array. When run-length encoded, each
element with an even subscript contains the
length of the run, and the following element
contains the starting index of the run.

IDLffShape::GetProperty

Iltem Description

N_RECORDS Return the number of records in the dBASE
table (.dbf) component of the shapefile. In a
normal operating mode, this is accomplished
by getting the number of entities. However, in
DBF_ONLY mode, no entity file exits.

What's New in IDL 5.6 New and Enhanced IDL Objects

62

IDLffShape::Init

Chapter 1: Overview of New Features in IDL 5.6

Item

Description

DBF_ONLY

If this keyword is set to a positive value, only
the underlying dBASE table (.dbf)
component of the shapefile is opened. All
entity related files are left closed. Two values
to this keyword are accepted: 1 - Open an
existing .dbf file, > 1 - Create anew .dbf file

The UPDATE keyword isrequired to open the
.dbf filefor updating.

IDLffShape::Open

Item

Description

DBF_ONLY

If this keyword is set to a positive value, only
the underlying dBASE table (.dbf)
component of the shapefile is opened. All
entity related files are left closed. Two values
to this keyword are accepted: 1 - Open an
existing .dbf file, > 1 - Create anew .dbf file

The UPDATE keyword isrequired to open the
.dbf filefor updating.

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 63
IDLgrAXxis::Init
Item Description
CLIP_PLANES Set this keyword to an array of dimensions

[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword isa scaar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of thisabject (prior to the application of
any x, Y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDevicelnfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

IDLgrBuffer::GetDevicelnfo

Item

Description

MAX_NUM_CLIP_PLANES

Set this keyword to a named variable that
upon return will contain an integer that
specifies the maximum number of user-
defined clipping planes supported by the
device.

What's New in IDL 5.6

New and Enhanced IDL Objects

64

IDLgrBuffer::PickData

Chapter 1: Overview of New Features in IDL 5.6

Item

Description

PICK_STATUS

Set this keyword to a named variable that will
contain “hit” information for each pixel in the
pick box. If the DIMENSION S keyword is not
set, the PICK_STATUS will be ascalar value
exactly matching the Result of the method
call. If the DIMENSIONS keyword is set, the
PICK_STATUS variable will be an array
matching the dimensions of the pick box.
Each value in the PICK_STATUS array
correspondsto apixel inthe pick box, and will
be set to one of the following values:

-1: if the pixel falls outside of the window’s
viewport.

0: if no graphic object is*hit” at that pixel
location.

1: if agraphic object is“hit” at that pixel
location.

IDLgrClipboard::GetDevicelnfo

Item

Description

MAX_NUM_CLIP_PLANES

Set this keyword to a named variable that
upon return will contain an integer that
specifies the maximum number of user-
defined clipping planes supported by the
device.

IDLgrContour::Init

Item

Description

AM_PM

Set this keyword to avector of 2 strings indicating the
names of the AM and PM strings when processing
explicitly formatted dates (CAPA, CApA, and CapA
format codes) with the LABEL_FORMAT keyword.

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 65

Item

Description

C_LABEL_INTERVAL

Set this keyword to a vector of values indicating the
distance (measured parametrically relative to the
length of each contour path) between labels for each
contour level. If the number of contour levels exceeds
the number of provided intervals, the
C_LABEL_INTERVAL valueswill be repeated
cyclically. The default is 0.4.

C_LABEL_OBJECTS

Set this keyword to an array of object referencesto
provide examples of labels to be drawn for each
contour level. The objects specified via this keyword
must inherit from one of the following classes:

* |IDLgrSymbol
* IDLgrText

If asingle object isprovided, and it isan IDLgrText
object, each of its strings will correspond to a contour
level. If avector of objectsisused, any IDLgrText
objects should have only a single string; each object
will correspond to acontour level.

By default, with C_LABEL_OBJECTS set equal to a
null object, IDL computestext labels that arethe string
representations of the corresponding contour level
values. Note that the objects specified viathis keyword
are used as descriptors only. The actua objects drawn
as labels are generated by IDL, and may be accessed
viathe IDLgrContour::GetL abel Info method. The
contour labels will have the same color asthe
corresponding contour level (see C_COLOR) unless
theC_USE LABEL_COLOR keyword is specified.
The orientation of the label will be automatically
computed unless the

C_USE LABEL_ORIENTATION keyword is
specified. The horizontal and vertical alignment of any
text labelswill default to 0.5 (i.e., centered) unlessthe
USE_TEXT_ALIGNMENTS keyword is specified.

Note - The object(s) set via this keyword will not be
destroyed automatically when the contour is
destroyed.

What's New in IDL 5.6

New and Enhanced IDL Objects

66

Chapter 1: Overview of New Features in IDL 5.6

Item

Description

C_LABEL_NOGAPS

Set this keyword to a vector of valuesindicating
whether gaps should be computed for the labels at the
corresponding contour value. A zero value indicates
that gaps will be computed for labels at that contour
value; anon-zero value indicates that no gaps will be
computed for labels at that contour value. If the
number of contour levels exceeds the number of
elementsin thisvector, the C_LABEL_NOGAPS
values will be repeated cyclically. By default, gaps for
the labels are computed for all levels (so that a contour
line does not pass through the abel).

C_LABEL_SHOW

Set this keyword to a vector of integers. For each
contour value, if the corresponding value in the
C_LABEL_SHOW vector is non-zero, the contour
line for that contour value will be labeled. If the
number of contour levels exceeds the number of
elementsin thisvector, the C LABEL_SHOW values
will be repeated cyclically. The default is O indicating
that no contour levels will be labeled.

C_USE_LABEL_
COLOR

Set this keyword to a vector of valuesto indicate
whether the COLOR property value for each of the
label objects (for the corresponding contour level) isto
be used to draw that label. If the number of contour
level s exceeds the number of elementsin this vector,
the C_USE _LABEL_COLOR values will be repeated
cyclically. By default, this valueis zero, indicating that
the COLOR properties of the label objectswill be
ignored, and the C_COLOR property for the contour
object will be used instead.

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 67

Item

Description

C_USE_LABEL_
ORIENTATION

Set this keyword to a vector of valuesto indicate
whether the orientation for each of the label objects
(for the corresponding contour level) is to be used
when drawing thelabel. For text, the orientation of the
object corresponds to the BASELINE and UPDIR
property vaues; for asymbol, thisrefers to the default
(un-rotated) orientation of the symbol. If the number
of contour levels exceeds the number of elementsin
this vector, the C_USE_LABEL_ORIENTATION
values will be repeated cyclically. By default, this
valueis zero, indicating that orientation of the label
object(s) will be set to automatically computed values
(to correspond to the direction of the contour paths).

CLIP_PLANES

Set this keyword to an array of dimensions[4,N]
specifying the coefficients of the clipping planesto be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of thiskeyword isascalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any x, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDevicelnfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.

What's New in IDL 5.6

New and Enhanced IDL Objects

68 Chapter 1: Overview of New Features in IDL 5.6

Item Description

DAYS OF WEEK Set this keyword to a vector of 7 stringsindicate the
names to be used for the days of the week when
processing explicitly formatted dates (CDWA, CDWA,
and CdwA format codes) with the LABEL_FORMAT
keyword.

LABEL_FONT Set thiskeyword to an instance of an IDLgrFont object
to describe the default font to be used for contour
labels. This font will be used for all text labels
automatically generated by IDL (i.e., if
C_LABEL_SHOW is set but the corresponding
C_LABEL_OBJECTS text object is hot provided), or
for any text label objects provided via
C_LABEL_OBJECTS that do not aready have the
font property set. The default valuefor thiskeyword is
aNULL object reference, indicating that 12 pt.
Helveticawill be used.

LABEL_FORMAT Set this keyword to a string that represents a format
string or the name of a function to be used to format
the contour labels. If the string begins with an open
parenthesis, it istreated as a standard format string.
(Refer to the Format Codes in the IDL Reference
Guide)) If the string does not begin with an open
parenthesis, it isinterpreted as the name of a callback
function to be used to generate contour level labels.

The callback function is called with three parameters:
AXxis, Index, and Value, where:

Axisissimply the value 2 to indicate that values along
the Z axis are being formatted. (This alows asingle
callback routine to be used for both axis labeling and
contour labeling.)

Index isthe contour level index (indices start at 0).
Vaueis the data value of the current contour level.

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 69

Item Description

LABEL_FRMTDATA Set this keyword to a value of any type. It will be
passed viathe DATA keyword to the user-supplied
formatting function specified via the
LABEL_FORMAT keyword, if any. By default, this
valueis 0O, indicating that the DATA keyword will not
be set (and furthermore, need not be supported by the
user-supplied function).

Note - LABEL_FRMTDATA will not beincluded in
the structure returned viathe ALL keyword to the
IDLgrContour::GetProperty method.

LABEL_UNITS Set this keyword to a string indicating the units to be
used for default contour level labeling.

Valid unit strings include:
e "Numeric"

* "Years"

e "Months"

s "Days'

* "Hours'

e "Minutes'

* "Seconds'

* "Time" - Usethisvaluetoindicate that the contour
levels correspond to time values; IDL will
determine the appropriate label format based upon
the range of values covered by the contour Z data.

e ""-Theempty string is equivalent to the
"Numeric" unit. Thisisthe default.

If any of the time units are utilized, then the contour
values are interpreted as Julian date/time values.

Note - The singular form of each of the time unit
strings is also acceptable (for example,
LEVEL_UNITS="Day" is equivalent to
LEVEL_UNITS="Days).

What's New in IDL 5.6 New and Enhanced IDL Objects

70 Chapter 1: Overview of New Features in IDL 5.6

Item Description

MONTHS Set thiskeyword to avector of 12 stringsindicating the
names to be used for the months when processing
explicitly formatted dates (CMOA, CMoA, and CmoA
format codes) with the C_LABEL_FORMAT

keyword.
USE TEXT_ Set this keyword to indicate that, for any IDLgrText
ALIGNMENTS labels (as specified viathe C_LABEL_OBJECTS

keyword), the ALIGNMENT and
VERTICAL_ALIGNMENT property values for the
given IDLgrText object(s) are to be used to draw the
corresponding |abels. By default, this value is zero,
indicating that the ALIGNMENT and
VERTICAL_ALIGNMENT properties of the label
IDLgrText object(s) will be set to default values (0.5
for each, indicating centered labels).

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 71

IDLgrimage::Init

Item

Description

CLIP_PLANES

Set this keyword to an array of dimensions[4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of thiskeyword isascalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any x, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDevicelnfo method for the IDLgrBuffer,
IDLgrClipboard, |DLgrWindow, and IDLgrVRML
objects.

What's New in IDL 5.6

New and Enhanced IDL Objects

72 Chapter 1: Overview of New Features in IDL 5.6

IDLgrModel::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of thiskeyword isascalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
the objects this model contains (prior to the application
of this model's transform).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDevicelnfo method for the IDLgrBuffer,
IDLgrClipboard, |DLgrWindow, and IDLgrVRML
objects.

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 73

IDLgrPlot::Init
Item Description
CLIP_PLANES Set this keyword to an array of dimensions [4,N]

specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keywordisascalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any X, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDevicelnfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.

What's New in IDL 5.6

New and Enhanced IDL Objects

74 Chapter 1: Overview of New Features in IDL 5.6

IDLgrPolygon::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes to be
applied to this object. The four coefficients for each
clipping plane are of the form [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that fall in
the half space Ax+By+Cz+D > 0 will be clipped. By
default, the value of this keywordisascalar (-1)
indicating that no clipping planes are to be applied.

Note - The clipping planes specified via this keyword
are applied in addition to the near and far clipping
planes associated with the IDLgrView in which this
object appears.

Note - Clipping planes are applied in the data space of
this object (prior to the application of any X, y, or z
coordinate conversion).

Note - To determine the maximum number of clipping
planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDevicelnfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and IDLgrVRML
objects.

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 75

IDLgrPolyline::Init

Iltem Description

CLIP_PLANES Set this keyword to an array of dimensions [4,N]
specifying the coefficients of the clipping planes
to be applied to this object. The four coefficients
for each clipping plane are of the form
[A,B,C,D], where Ax+By+Cz+D = 0. Portions
of this object that fall in the half space
Ax+By+Cz+D > 0 will be clipped. By default,
the value of this keywordisascaar (-1)
indicating that no clipping planes areto be
applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near and
far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this abject (prior to the application of
any x, Y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use the
MAX_NUM_CLIP_PLANES keyword of the
GetDevicelnfo method for the IDLgrBuffer,
IDLgrClipboard, IDLgrWindow, and
IDLgrVRML objects.

LABEL_NOGAPS Set this keyword to a vector of valuesindicating
whether gaps should be computed for the
corresponding label. A zero value indicates that
agap will be computed for the |abels; anon-zero
value indicates that no gap will be computed for
the label. If the number of labels exceeds the
number of elementsin this vector, the
LABEL_NOGAPS values will be repeated
cyclicaly. By default, gaps are computed for &l
labels (so that the polyline does not pass through
the label).

What's New in IDL 5.6 New and Enhanced IDL Objects

76

Chapter 1: Overview of New Features in IDL 5.6

Item

Description

LABEL_OFFSETS

Set this keyword to ascalar or vector of floating
point offsets, [tO, t1, ...], that indicate the
parametric offsets aong the length of each
polyline (specified viathe

LABEL_POLY LINES keyword) at which each
label (as specified viathe LABEL_OBJECTS
keyword) would be positioned. If
LABEL_OFFSETS s set to ascalar less than
zero, then the offsets will be automatically
computed to be evenly distributed along the
length of the polyline. If a scalar value greater
than or equal to zero isprovided, it isused for all
labels. If avector is provided, the number of
offsets must match the number of labels
provided viaLABEL_OBJECTS. By default,
this keyword is set to the scalar, -1, indicating
that the label offsets will be automatically
computed.

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 77

Iltem Description

LABEL_OBJECTS Set this keyword to an object reference (or vector
of object references) to specify the labelsto be
drawn aong the polyline path(s). The objects
specified viathis keyword must inherit from one
of the following classes:

* |IDLgrSymbol
* IDLgrText

If asingle object isprovided, and it isan
IDLgrText object, each of its strings will
correspond to alabel. If avector of objectsis
used, any IDLgrText objects should have only a
single string; each object will correspond to a
label.

If one or more IDLgrText objects are provided,
the LOCATION property of the provided text
object(s) may be overwritten; position is
determined according to the values provided via
the LABEL_OFFSETS keyword. The labelswill
have the same color as the corresponding
polyline (see the COLOR keyword) unless the
USE_LABEL_COLOR keyword is specified.
The orientation of the label objects
USE_LABEL_ORIENTATION keyword is
specified. The horizontal and vertical alignment
for any text labels will each default to 0.5 (i.e.,
centered) unlessthe

USE TEXT_ALIGNMENTSkeywordis
specified.

Note - The objects provided viathis keyword
will not be destroyed automatically when this
IDLgrPolyline is destroyed.

What's New in IDL 5.6 New and Enhanced IDL Objects

78

Chapter 1: Overview of New Features in IDL 5.6

Item

Description

LABEL_POLYLINES

Set this keyword to a scalar or a vector of
polyline indices, [PO, P1, ...], that indicate
which polylines are to be labeled. Pi corresponds
to the ith polyline specified viathe POLYLINES
keyword. This keyword is intended to be used in
conjunction with the LABEL_OBJECTS
keyword. If ascalar isprovided, all labelswill be
drawn along the single indicated polyline. If a
vector is provided, the number of polyline
indices must match the number of labels
provided viaLABEL_OBJECTS.

By default, this keyword is set to the scalar, 0,
indicating that only the first polyline will be
labeled.

Note - If a given polyline has more than one
label, then the corresponding polylineindex may
appear more than oncein the

LABEL_ POLYLINES vector.

LABEL_USE_VERTEX__
COLOR

Set this keyword to anon-zero value to indicate
that labels should be colored according to the
vertex coloring (if theVERT_COL ORS keyword
is set). By default, thisvalueis zero, indicating
that the label will be drawn using the color
specified viathe COLOR property of the
polyline object (unless the
USE_LABEL_COLOR keyword is set).

USE_LABEL_COLOR

Set this keyword to a vector of values to indicate
whether the COLOR property value for the
corresponding label object isto be used to draw
that label. If the number of labels exceeds the
number of elementsin this vector, the
USE_LABEL_COLOR values will be repeated
cyclicaly. By default, this valueis zero,
indicating that the COLOR property of each
label object will be ignored, and the COLOR
property for the polyline object will be used
instead.

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 79

Iltem Description

USE _LABEL_ORIENTATION | Set thiskeyword to avector of valuesto indicate
whether the orientation of the corresponding
label object isto be used to draw that 1abel. For
IDLgrText objects, this refersto the BASELINE
and UPDIR property values. For IDLgrSymbol
objects, this refersto the default (un-rotated)
orientation of the symbol. If the number of |abels
exceeds the number of elementsin this vector,
the USE_LABEL_ORIENTATION values will
be repeated cyclicaly. By default,

USE LABEL_ORIENTATION is zero,
indicating that the orientation will be
automatically computed so that the baselineis
paralel to the polyline, and the updir is
perpendicular to the polyline.

USE TEXT_ALIGNMENTS | Set thiskeyword to indicate that, for any
IDLgrText labels (as specified viathe
LABEL_OBJECTS keyword), the
ALIGNMENT and VERTICAL_ALIGNMENT
property values for the given IDLgrText
object(s) are to be used to draw those labels. By
default, thisvalueis zero, indicating that the
ALIGNMENT and VERTICAL_ALIGNMENT
properties of the IDLgrText object(s) will be
overwritten with default values (0.5 for each,
indicating centered |abels).

What's New in IDL 5.6 New and Enhanced IDL Objects

80 Chapter 1: Overview of New Features in IDL 5.6

IDLgrROI::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword isa scaar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of thisabject (prior to the application of
any x, Y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDevicelnfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

IDLgrROIGroup::Init

81

Item

Description

CLIP_PLANES

Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword isa scaar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of thisabject (prior to the application of
any x, Y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDevicelnfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

What's New in IDL 5.6

New and Enhanced IDL Objects

82 Chapter 1: Overview of New Features in IDL 5.6

IDLgrSurface::Init

Item Description

CLIP_PLANES Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the clipping
planes to be applied to this object. The four
coefficients for each clipping plane are of the
form [A,B,C,D], where Ax+By+Cz+D = 0.
Portions of this object that fall in the half space
Ax+By+Cz+D > 0 will be clipped. By default,
the value of this keyword isascaar (-1)
indicating that no clipping planes are to be
applied.

Note - The clipping planes specified viathis
keyword are applied in addition to the near and
far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of this object (prior to the application of
any x, Yy, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDevicelnfo method for the
IDLgrBuffer, IDLgrClipboard, IDLgrWindow,
and IDLgrVRML objects.

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

IDLgrSymbol::Init

83

Item

Description

Data

This argument can contain either an integer
value from the list shown below, or an object
reference to either an IDLgrM odel object or
atomic graphic object.

Use one of the following scalar-represented
internal default symbols:

0= No symbol
1="Plussign, ‘+' (default)
2 = Agterisk

3 = Period (Dot)

4 = Diamond
5=Triangle

6 = Square

7=X

8 = Arrow Head

If an instance of the IDLgrModel object class
or an atomic graphic object is used, the abject
tree isused as the symbol.

What's New in IDL 5.6

New and Enhanced IDL Objects

84 Chapter 1: Overview of New Features in IDL 5.6

IDLgrTessellator::AddPolygon

Item

Description

AUXDATA

Set this keyword to an array of auxiliary per-
vertex data. This array must have dimensions
[m,n] where m isthe number of auxiliary data
items per vertex and n is the number of
vertices specified in the X, Y, and Z
arguments. If you specify AUXDATA in any
invocation of the AddPolygon method, you
must specify it on all invocations of the
method for the polygons to be tessellated
together with the Tessellate method. Further,
the value of m in the dimensions must be the
same for al polygons. That is, al polygons
must have the same number of auxiliary data
itemsfor each vertex.

IDLgrTessellator::Tessellate

Item

Description

AUXDATA

Set this keyword to a named variable that
receives the auxiliary data associated with
each vertex returned in the Vertices argument.
The datais an [m, n] array where misthe
number of per-vertex auxiliary dataitems
specified in the call(s) to the AddPolygon
method, and n is the number of vertices
returned in the Vertices argument. The type of
the returned auxiliary datais the same asthe
type of the data supplied with the AUXDATA
keyword in the last call to AddPolygon.

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

IDLgrText::Init

85

Item

Description

CLIP_PLANES

Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword isa scaar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of thisabject (prior to the application of
any x, Y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDevicelnfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

What's New in IDL 5.6

New and Enhanced IDL Objects

86

IDLgrVolume::Init

Chapter 1: Overview of New Features in IDL 5.6

Item

Description

CLIP_PLANES

Set this keyword to an array of dimensions
[4,N] specifying the coefficients of the
clipping planes to be applied to this object.
The four coefficients for each clipping plane
are of theform [A,B,C,D], where
Ax+By+Cz+D = 0. Portions of this object that
fall in the half space Ax+By+Cz+D > 0 will
be clipped. By default, the value of this
keyword isa scaar (-1) indicating that no
clipping planes are to be applied.

Note - The clipping planes specified via this
keyword are applied in addition to the near
and far clipping planes associated with the
IDLgrView in which this object appears.

Note - Clipping planes are applied in the data
space of thisabject (prior to the application of
any x, Y, or z coordinate conversion).

Note - To determine the maximum number of
clipping planes supported by the device, use
the MAX_NUM_CLIP_PLANES keyword of
the GetDevicelnfo method for the
IDLgrBuffer, IDLgrClipboard,
IDLgrWindow, and IDLgrVRML objects.

Note - Clipping planes are equivalent to
cutting planes (refer to the
CUTTING_PLANES keyword). The
CUTTING_PLANES will be applied first,
then the CLIP_PLANES (until a maximum
number of planesis reached).

New and Enhanced IDL Objects

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 87

IDLgrVRML::GetDevicelnfo

Iltem Description

MAX_NUM_CLIP_PLANES | Set this keyword to a named variable that upon
return will contain an integer that specifies the
maximum number of user-defined clipping
planes supported by the device.

IDLgrWindow::GetDevicelnfo

Iltem Description

MAX_NUM_CLIP_PLANES Set thiskeyword to a named variable that upon
return will contain an integer that specifiesthe
maximum number of user-defined clipping
planes supported by the device.

IDLgrWindow::PickData

Iltem Description

PICK_STATUS Set this keyword to anamed variable that will
contain “hit” information for each pixel in the
pick box. If the DIMENSION S keyword is not
set, the PICK_STATUS will be ascalar value
exactly matching the Result of the method
call. If the DIMENSIONS keyword is set, the
PICK_STATUS variable will be an array
matching the dimensions of the pick box.
Each value in the PICK_STATUS array
correspondsto apixel inthe pick box, and will
be set to one of the following values:

-1: if the pixel falls outside of the window’s

viewport.

0: if no graphic object is*hit” at that pixel
location.

1: if agraphic object is“hit” at that pixel
location.

What's New in IDL 5.6 New and Enhanced IDL Objects

88 Chapter 1: Overview of New Features in IDL 5.6

IDLgrWindow::SetCurrentCursor

Item Description

CursorName A string that specifies which built-in cursor to
use. Thisargument isignored if any keywords
to thisroutine are set. This string can either be
aname provided to the
REGISTER_CURSOR routine or one of the
following:

« ARROW

« CROSSHAIR
- ICON

« IBEAM

« MOVE

« ORIGINAL
. SIZE_NE

. SIZE_NW

. SIZE_SE

. SIZE_SW

. SIZE_NS

. SIZE_EW

« UP_ARROW

New and Enhanced IDL Objects What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

89

New and Enhanced IDL Routines

This section describes the following:

New IDL Routines

IDL Routine Enhancements

New IDL Routines

The following isalist of new functions and procedures added to IDL in this release:

New Routine

Description

COPY_LUN

The COPY _LUN procedure copies data
between two open files. It isuseful in situations
where it is necessary to transfer a known
amount of datafrom one file to another without
the requirement of having the dataavailable in
an IDL variable.

DIAG_MATRIX

The DIAG_MATRIX procedure constructs a
diagonal matrix from an input vector, or if given
amatrix, then DIAG_MATRIX will extract a
diagona vector.

FILE_COPY

The FILE_COPY procedure copiesfiles, or
directories of files, to anew location. The
copies retain the protection settings of the
original files, and belong to the user that
performed the copy.

FILE_LINES

The FILE_LINES function returns the number
of lines of text contained within the specified
fileor files. If anarray of file namesis specified
as theinput parameter, the return value is an
array with the same number of elements as the
input array, with each element containing the
number of linesin the corresponding file.

Table 1-13: New Routines in IDL 5.6

What's New in IDL 5.6

New and Enhanced IDL Routines

90

Chapter 1: Overview of New Features in IDL 5.6

New Routine Description
FILE LINK The FILE_LINK procedure creates UNIX file
links, both regular (hard) and symbolic.
FILE_LINK isavailable only under UNIX.
FILE_ MOVE The FILE_MOVE procedure renames files and

directories. The moved files retain their
protection and ownership attributes.

FILE_READLINK

The FILE_READLINK function returns the
path pointed to by UNIX symbolic links.

FILE_SAME

The FILE_SAME function is used to determine
if two different file names refer to the same
underlying file. FILE_SAME returns True (1) if
they are, or False (0) otherwise. If either or both
of theinput arguments are arrays of file names,
the result is an array, following the same rules
as standard IDL operators.

H5 BROWSER

The H5_BROWSER function presents a
graphical user interface for viewing and reading
HDF5 files.

H5_CLOSE

The H5_CLOSE procedure flushes all datato
disk, closesfileidentifiers, and cleans up
memory. Thisroutine closes IDL’s link to its
HDF5 libraries. This procedureis used
automatically by IDL when RESET_SESSION
isissued, but it may also be called if the user
desiresto free al HDF5 resources.

H5 GET_LIBVERSION

The H5_GET_LIBVERSION function returns
the current version of the HDF5 library used by
IDL.

H5_OPEN

The H5_OPEN procedureinitializes IDL's
HDF5 library. This procedureis issued
automatically by IDL when one of IDL's HDF5
routines is used.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 91

New Routine Description

H5 PARSE The H5_PARSE function recursively descends
through an HDF5 file or group and creates an
IDL structure containing object information and
data.

H5A_CLOSE The H5A_CLOSE procedure closes the
specified attribute and rel eases resources used
by it. After this routine is used, the attribute’s
identifier isno longer available until the
H5A_OPEN routines are used again to specify
that attribute. Further use of the attribute

identifier isillegal.

H5A_GET_NAME The H5A_GET_NAME function retrieves an
attribute name given the attribute identifier
number.

H5A_GET_NUM_ATTRS TheH5A_GET_NUM_ATTRSfunction returns

the number of attributes attached to agroup,
dataset, or a named datatype.

H5A_ GET_SPACE The H5A_GET_SPACE function returns the
identifier number of acopy of the dataspace for
an attribute.

H5A_GET_TYPE The HS5A_GET_TY PE function returns the
identifier number of acopy of the datatype for
an attribute.

H5A_OPEN_IDX The H5A_OPEN_IDX function opens an
existing attribute by the index of that attribute
within an HDFb5.

H5A_OPEN_NAME The H5A_OPEN_NAME function opens an
existing attribute by the name of that attribute
within an HDF5 file.

H5A_READ The H5A_READ function reads the data within
an attribute, converting from the HDF5 file
datatype into the HDF5 memory datatype, and
finally into the corresponding IDL datatype.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6 New and Enhanced IDL Routines

92 Chapter 1: Overview of New Features in IDL 5.6
New Routine Description
H5D_CLOSE The H5D_CL OSE procedure closes the

specified dataset and releases its used resources.

H5D_GET_SPACE

The H5D_GET_SPACE function returns an
identifier number for a copy of the dataspace for
adataset.

H5D_GET_STORAGE_SIZE

TheH5D GET_STORAGE_SIZE function
returns the amount of storage in bytes required
for adataset. For chunked datasets thisis the
number of allocated chunks times the chunk
size.

H5D_GET_TYPE

The H5D_GET_TY PE function returns an
identifier number for a copy of the datatype for
adataset.

H5D_OPEN The H5D_OPEN function opens an existing
dataset within an HDF5 file.

H5D_READ The H5D_READ function reads the data within
adataset, converting from the HDF5 file
datatype into the HDF5 memory datatype, and
finally into the corresponding IDL datatype.

H5F _CLOSE The H5F_CL OSE procedure closes the
specified file and rel eases resources used by it.

H5F IS HDF5 TheH5F_IS HDFS5 function determinesif afile
isin the HDF5 format.

H5F_OPEN The H5F_OPEN function opens an existing
HDF5file.

H5G_CLOSE The H5G_CL OSE procedure closes the

specified group and releases resources used by
it.

H5G_GET_COMMENT

The H5G_GET_COMMENT function retrieves
acomment string from a specified object.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

93

New Routine

Description

H5G_GET_LINKVAL

The H5G_GET_LINKVAL function returnsthe
name of the object pointed to by a symbolic
link.

H5G_GET_MEMBER_NAME

The H5G_GET_MEMBER_NAME function
retrieves the name of an object within agroup,
by its zero-based index.

H5G_GET_NMEMBERS

The H5G_GET_NMEMBERS function returns
the number of objects within a group.

H5G_GET_OBJNFO

The H5G_GET_OBJNFO function retrieves
information from a specified object.

H5G_OPEN The H5G_OPEN function opens an existing
group within an HDF5 file.
H5_GET_TYPE The H5I_GET_TY PE function returns the

object’stype.

H5R_DEREFERENCE

The H5R_DEREFERENCE function opens a
reference and returns the object identifier.

H5R_GET_OBJECT_TYPE

The HSR_GET_OBJECT_TY PE function
returns the type of object that an object
reference points to.

H5S CLOSE The H5S_CL OSE procedure releases and
terminates access to a dataspace. After this
routine is used, the dataspace’s identifier isno
longer available.

H5S _COPY The H5S_COPY function copies an existing

dataspace.

H5S CREATE_SIMPLE

TheH5S CREATE_SIMPLE function createsa
simple dataspace.

H5S GET_SELECT BOUNDS

The H5S_GET_SELECT_BOUNDS function
retrieves the coordinates of the bounding box
containing the current dataspace selection.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

94

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

H5S GET_SELECT_ELEM_NPOINTS

The H5S _GET_SELECT_ELEM_NPOINTS
function determines the number of element
points in the current dataspace selection.

H5S GET_SELECT ELEM_POINTLIST

The H5S SELECT_ELEM_POINTLIST
function returns alist of the element pointsin
the current dataspace selection.

H5S_GET_SELECT_HYPER _BLOCKLIST

The H5S GET_SELECT_HYPER_
BLOCKLIST function returns alist of the
hyperslab blocks in the current dataspace
selection.

H5S GET_SELECT_HYPER _NBLOCKS

TheH5S GET_SELECT HYPER_NBLOCKS
function determines the number of hyperslab
blocks in the current dataspace selection.

H5S GET_SELECT NPOINTS

The H5S GET_SELECT NPOINTS function
determines the number of elementsin a
dataspace selection.

H5S_GET_SIMPLE_EXTENT_DIMS

The H5S _GET_SIMPLE_EXTENT_DIMS
function returns the dimension sizes for a
dataspace.

H5S_GET_SIMPLE_EXTENT_NDIMS

The H5S_GET_SIMPLE_EXTENT_NDIMS
function determines the number of dimensions
(or rank) of a dataspace.

H5S_GET_SIMPLE_EXTENT_NPOINTS

TheH5S GET_SIMPLE _EXTENT_NPOINTS
function determines the number of elementsin a
dataspace.

H5S _GET_SIMPLE_EXTENT_TYPE

The H5S GET_SIMPLE_EXTENT_TYPE
function returns the current class of a dataspace.

H5S 1S SIMPLE

The H5S IS SIMPLE function determines
whether a dataspace is a simple dataspace.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

95

New Routine

Description

H5S_OFFSET_SIMPLE

TheH5S _OFFSET_SIMPLE procedure setsthe
selection offset for a simple dataspace. The
offset allows the same shaped selection to be
moved to different locations within the
dataspace.

H5S SELECT_ALL

The H5S_SELECT_ALL procedure selects the
entire extent of a dataspace.

H5S _SELECT_ELEMENTS

The H5S_SELECT_ELEMENTS procedure
selects array elements to be included in the
selection for a dataspace.

H5S _SELECT_HYPERSLAB

The H5S_SELECT_HYPERSLAB procedure
selects a hyperslab region to beincluded in the
selection for a dataspace.

H5S_SELECT_NONE

TheH5S_SELECT_NONE procedureresetsthe
dataspace selection region to include no
elements.

H5S_SELECT_VALID

The H5S_SELECT_VALID function verifies
that the selection iswithin the extent of a
dataspace.

H5T CLOSE

The H5T_CLOSE procedure rel eases the
specified datatype’s identifier and releases
resources used by it.

H5T_COMMITTED

The HST_COMMITTED function determines
whether a datatype is a named datatype or a
transient type.

H5T_COPY The H5T_COPY function copies an existing
datatype. The returned type is transient and
unlocked.

H5T_EQUAL The H5T_EQUAL function determineswhether

two datatype identifiersrefer to the same
datatype.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

96

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

H5T_GET_ARRAY _DIMS

The HST_GET_ARRAY_DIMS function
returns the dimension sizes for an array
datatype object.

H5T_GET_ARRAY_NDIMS

The HST_GET_ARRAY_NDIMS function
determines the number of dimensions (or rank)
of an array datatype object.

H5T GET_CLASS

The H5T_GET_CLASS function returns the
datatype’s class.

H5T GET_CSET

The H5T_GET_CSET function returns the
character set type of a string datatype.

H5T_GET_EBIAS

The H5T_GET_EBIAS function returns the
exponent bias of afloating-point type.

H5T_GET_FIELDS

The H5T_GET_FIELDS function retrieves
information about the positions and sizes of bit
fields within a floating-point datatype.

H5T_GET_INPAD

The H5T_GET_INPAD function returns the
padding method for unused internal bits within
afloating-point datatype.

H5T_GET_MEMBER_CLASS

The HST_GET_MEMBER_CLASS function
returns the datatype class of a compound
datatype member.

H5T_GET_MEMBER_NAME

The HST_GET_MEMBER_NAME function
returns the datatype name of a compound
datatype member.

H5T_GET_MEMBER_OFFSET

The H5T _GET_MEMBER_OFFSET function
returns the byte offset of afield within a
compound datatype.

H5T_GET_MEMBER_TYPE

The HST_GET_MEMBER_TY PE function
returns the datatype identifier for a specified
member within a compound datatype.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 97

New Routine Description
H5T_GET_NMEMBERS The HST_GET_NMEMBERS function returns
the number of fieldsin a compound datatype.
H5T_GET_NORM The HS5T_GET_NORM function returns the
mantissa normalization of afloating-point
datatype.
H5T _GET_OFFSET The H5T _GET_OFFSET function returns the

bit offset of the first significant bit in an atomic
datatype. The offset is the number of bits of

padding that follows the significant bits (for big
endian) or precedesthe significant bits (for little

endian).
H5T_GET_ORDER The H5T_GET_ORDER function returns the
byte order of an atomic datatype.
H5T_GET_PAD The H5T_GET_PAD function returnsthe

padding method of the least significant bit (Isb)
and most significant bit (msb) of an atomic
datatype.

H5T_GET_PRECISION The H5T_GET_PRECISION function returns
the precision in bits of an atomic datatype. The
precision isthe number of significant bits
which, unless padded, is 8 times larger than the
byte sizefrom H5T_GET_SIZE.

H5T_GET_SIGN The H5T_GET_SIGN function returns the sign
type for an integer datatype.

H5T_GET_SIZE The H5T_GET_SIZE function returns the size
of adatatypein bytes.

H5T_GET_STRPAD The H5T_GET_STRPAD function returns the
padding method for a string datatype.

H5T_GET_SUPER The H5T_GET_SUPER function returns the
base datatype from which a datatype is derived.

H5T_IDLTYPE The H5T_IDLTY PE function returns the IDL

type code corresponding to a datatype.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6 New and Enhanced IDL Routines

98

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

H5T_MEMTY PE

The HST_MEMTY PE function returns the
native memory datatype corresponding to afile
datatype.

H5T_OPEN The H5T_OPEN function opens a named
datatype.
LA_CHOLDC The LA_CHOLDC procedure computes the

Cholesky factorization of an n-by-n symmetric
(or Hermitian) positive-definite array as:

« IfAisred: A=UTUorA=LLT

* If Aliscomplex: A= UHuora=LLH
where U and L are upper and lower triangular
arrays. The T represents the transpose while H

represents the Hermitian, or transpose complex
conjugate.

LA_CHOLMPROVE

The LA_CHOLMPROVE function uses
Cholesky factorization to improve the solution
to a system of linear equations, AX = B (where
Ais symmetric or Hermitian), and provides
optional error bounds and backward error
estimates. Theresult is an n-element vector
whose typeisidentical to A.

The LA_CHOLMPROVE function may also be
used to improve the solutions for multiple
systems of linear equations, with each column
of B representing a different set of equations. In
this case, the result isak-by-n array where each
of the k columns represents the improved
solution vector for that set of equations.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

99

New Routine

Description

LA_CHOLSOL

The LA_CHOLSOL functionisusedin
conjunction with the LA_CHOLDC procedure
to solve aset of n linear equationsin n
unknowns, AX = B, where A must be a
symmetric (or Hermitian) positive-definite
array. The parameter A isinput not asthe
original array, but asits Cholesky
decomposition, created by the routine
LA_CHOLDC. Theresult isan n-element
vector whose type isidentical to A.

The LA_CHOLSOL function may also be used
to solve for multiple systems of linear
equations, with each column of B representing a
different set of equations. In this case, the result
is ak-by-n array where each of the k columns
represents the solution vector for that set of
equations.

LA_DETERM

The LA_DETERM function uses LU
decomposition to compute the determinant of a
square array. Theresult isascalar of the same
type as the input array.

Thisroutine iswritten in the IDL language. Its
source code can be found in the file

| a_determ prointhel i b subdirectory of the
IDL distribution.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

100

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

LA_EIGENPROBLEM

The LA_EIGENPROBLEM function uses the
QR algorithm to compute all eigenvalues A and
eigenvectors v # 0 of an n-by-n real
nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = Av. The routine
can a'so compute the left eigenvectorsu £ 0,
which satisfy u"A = A"
LA_EIGENPROBLEM may also be used for
the generalized eigenproblem:

« Av= ABvandu"A=Au"B

where A and B are square arrays, v are the right
eigenvectors, and u are the | eft eigenvectors.

The result is a complex n-element vector
containing the eigenvalues.

LA_EIGENQL

The LA_EIGENQL function computes selected
eigenvalues A and eigenvectors z# 0 of an n-by-
nreal symmetric or complex Hermitian array A,
for the eigenproblem Az= Az

LA_EIGENQL may also be used for the
generalized symmetric eigenproblems:

e Az=)ABzor ABz=Azor BAz= Az

where A and B are symmetric (or Hermitian)
and B is positive definite.

In both cases, the result isareal vector
containing the eigenvalues in ascending order.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

101

New Routine

Description

LA_EIGENVEC

The LA_EIGENVEC function uses the QR
algorithm to compute al or some of the
eigenvectors v z 0 of an n-by-n real
nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = Av. The routine
can a'so compute the left eigenvectors u # 0,
which satisfy u"A = au".

Theresult isa complex array containing the
elgenvectors as a set of row vectors.

LA_ELMHES

The LA_ELMHES function reduces areal
nonsymmetric or complex non-Hermitian array
to upper Hessenberg form H. If the array isrea
then the decompositionisA=Q H Q', where Q
is orthogonal . If the array is complex Hermitian
then the decom[?osition isA=QH Q" whereQ
isunitary. The ' represents the transpose while
superscript H represents the Hermitian, or
transpose complex conjugate.

Theresult isan array of the same type as A
containing the upper Hessenberg form.

LA_GM_LINEAR_MODEL

The LA_GM_LINEAR_MODEL functionis
used to solve a general Gauss-Markov linear
model problem:

* minimize, ||y||? with constraint d = Ax + By

where A isan m-column by n-row array, Bisa
p-column by n-row array, and d is an n-element
input vector with m< n< m+p. Theresult, X, is
an m-element vector whose typeisidentical to
A

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

102

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

LA_HQR

The LA_HQOR function uses the multishift QR
algorithm to compute al eigenvalues of an n-
by-n upper Hessenberg array. The
LA_ELMHES routine can be used to reduce a
real or complex array to upper Hessenberg form
suitable for input to this procedure. LA_HOR
may also be used to compute the matrices T and
QZ from the Schur decomposition A= (Q2) T
Q2"

The result is an n-element complex vector.

LA_INVERT

The LA_INVERT function uses LU
decomposition to compute the inverse of a
square array. Theresult is an array of the same
dimensions as the input array.

LA_LEAST SQUARE_EQUALITY

The LA _LEAST_SQUARE_EQUALITY
function is used to solve the linear |east-squares
problem:

Minimize, ||Ax - ¢||? with constraint Bx = d

where A is an n-column by m-row array, B isan
n-column by p-row array, cisan m-element
input vector, and d is a p-element input vector
with p < n < m+p. Theresult, x, isan n-element
vector. If B has full row rank p and the array

"
has full column rank n, then a unique solution
exists.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

103

New Routine

Description

LA_LEAST_SQUARES

The LA_LEAST_SQUARES functionis used
to solve the linear least-sguares problem:
Minimize, [|Ax - b||?

where A isa (possibly rank-deficient) n-column
by m-row array, b is an m-element input vector,
and x is the n-element solution vector.

LA_LINEAR_EQUATION

The LA_LINEAR_EQUATION function uses
LU decomposition to solve a system of linear
equations, AX = B, and provides optional error
bounds and backward error estimates. The
result is an n-element vector whose typeis
identical to A.

The LA_LINEAR_EQUATION function may
also be used to solve for multiple systems of
linear equations, with each column of B
representing a different set of equations. In this
case, the result is a k-by-n array where each of
the k columns represents the improved solution
vector for that set of equations.

LA_LUDC

The LA_LUDC procedure computes the LU
decomposition of an n-column by m-row array
as:

A=PLU

where P is a permutation matrix, L islower
trapezoida with unit diagonal elements (lower
triangular if n=m), and U is upper trapezoidal
(upper triangular if n=m).

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

104

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

LA_LUMPROVE

The LA_LUMPROVE function uses LU
decomposition to improve the solution to a
system of linear equations, AX = B, and
provides optional error bounds and backward
error estimates. The result is an n-element
vector.

The LA_LUMPROVE function may also be
used to improve the solutions for multiple
systems of linear equations, with each column
of B representing a different set of equations. In
this case, the result isak-by-n array where each
of the k columns represents the improved
solution vector for that set of equations.

LA_LUSOL

The LA_LUSOL functionisusedin
conjunction with the LA_LUDC procedure to
solve a set of n linear equations in n unknowns,
AX = B. The parameter A is not the original
array, but its LU decomposition, created by the
routine LA_LUDC. Theresult is an n-element
vector.

The LA_LUSOL function may also be used to
solve for multiple systems of linear equations,
with each column of B representing a different
set of equations. In this case, the result isak-by-
n array where each of the k columns represents
the solution vector for that set of equations.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

105

New Routine

Description

LA_SVD

The LA_SVD procedure computes the singular
value decompoasition (SVD) of an n-columns by
m-row array as the product of orthogonal and
diagonal arrays:

« Aisrea: A=U SV’
* Aiscomplex: A=U S

where U is an orthogonal array containing the
left singular vectors, Sisadiagonal array
containing the singular values, and Vis an
orthogonal array containing the right singular
vectors. The superscript T represents the
transpose while the superscript H representsthe
Hermitian, or transpose complex conjugate.

If n <mthen U has dimensions (n x m), Shas
dimensions (n x n), and V! has dimensions
(nxn).1f n=mthen U hasdimensions (m x m),
Shas dimensions (m x m), and V! has
dimensions (n x m).

LA_TRIDC

The LA_TRIDC procedure computes the LU
decomposition of atridiagonal (n x n) array as
Array =L U, where L is a product of
permutation and unit lower bidiagonal arrays,
and U isupper triangular with nonzero elements
only in the main diagonal and the first two
superdiagonals.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

106

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

LA_TRIMPROVE

The LA_TRIMPROVE function improves the
solution to asystem of linear equations with a
tridiagonal array, AX = B, and provides optional
error bounds and backward error estimates. The
result is an n-element vector.

The LA_TRIMPROVE function may also be
used to improve the solutions for multiple
systems of linear equations, with each column
of B representing a different set of equations. In
this case, the result isak-by-n array where each
of the k columns represents the improved
solution vector for that set of equations.

LA_TRIQL

TheLA_TRIQL procedure usesthe QL and QR
variants of the implicitly-shifted QR algorithm
to compute the eigenvalues and eigenvectors of
asymmetric tridiagonal array. The
LA_TRIRED routine can be used to reduce a
real symmetric (or complex Hermitian) array to
tridiagonal form suitable for input to this
procedure.

LA_TRIRED

The LA_TRIRED procedure reduces area
symmetric or complex Hermitian array to real
tridiagonal form T. If the array isreal symmetric
then the decompositionisA=Q T Q', where Q
is orthogonal . If the array is complex Hermitian
then the decompositionisA=Q T Q", where Q
is unitary. The superscript T represents the
transpose while superscript H represents the
Hermitian, or transpose complex conjugate.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

107

New Routine

Description

LA_TRISOL

The LA_TRISOL functionisusedin
conjunction with the LA_TRIDC procedure to
solve a set of n linear equations in n unknowns,
AX =B, where Ais atridiagonal array. The
parameter A isinput not as the original array,
but asits LU decomposition, created by the
routine LA_TRIDC. Theresult is an n-element
vector.

The LA_TRISOL function may also be used to
solve for multiple systems of linear equations,
with each column of B representing a different
set of equations. In this case, the result is ak-by-
n array where each of the k columns represents
the solution vector for that set of equations.

MAP_PROJ FORWARD

The MAP_PROJ_FORWARD function
transforms map coordinates from
longitude/latitude to (X, Y) Cartesian
coordinates, using either the IMAP system
variable or a supplied map projection variable.

MAP_PROJ INIT

The MAP_PROJ_INIT functioninitializes a
mapping projection, using either the IDL or
General Cartographic Transformation Package
(GCTP) map projections. Theresultisa!MAP
structure containing the map parameters, which
can be used as input to the map transformation
functions MAP_PROJ_FORWARD and
MAP_PROJ INVERSE.

MAP_PROJ INVERSE

The MAP_PROJ_INVERSE function
transforms map coordinates from (X, Y)
Cartesian coordinates to longitude/latitude,
using either the IMAP system variable or a
supplied map projection variable.

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

108

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

MATRIX_POWER

The MATRIX_POWER function computes the
product of amatrix with itself. For example, the
fifth power of array AisA#A#A# A#A.
Negative powers are computed using the matrix
inverse of the positive power.

PRODUCT

The PRODUCT function returns the product of
elements within an array. The product of the
array elements can also be computed over a
given dimension.

REGISTER_CURSOR

The REGISTER_CURSOR procedure
associates the given name with the given cursor
information. This name can then be used with
the IDLgrWindow::SetCurrentCursor method.

SHMDEBUG

It can be difficult to know when avariable
created with the SHMVAR function loses its
reference to the underlying memory segment
created by SHMMAP.

The SHMDEBUG function is used to enable a
debugging mode in which IDL prints an
informational message including a traceback
every time such avariable loses its reference to
the underlying segment. SHMDEBUG returns
the previous setting of the debugging state.

SHMMAP

The SHMM AP procedure maps anonymous
shared memory, or local disk files, into the
memory address space of the currently
executing IDL process. Mapped memory
segments are associated with an IDL array
specified by the user as part of the cal to
SHMMAP. The type and dimensions of the
specified array determine the length of the
memory segment.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

109

New Routine

Description

SHMUNMAP

The SHMUNMAP procedureis used to remove
amemory segment previously created by
SHMMAP from the system. If the segment has
no variables currently accessing it (that is, if its
reference count is zero) the segment is
immediately removed from the system. If the
segment has variables still referencing it, the
unmapping is delayed until the last such
variable drops its reference.

SHMVAR

The SHMVAR function creates an IDL array
variable that uses the memory from a current
mapped memory segment created by the
SHMMAP procedure. Variables created by
SHMVAR are used in much the same way as
any other IDL variable, and provide the IDL
user with the ability to ater the contents of
anonymous shared memory or memory mapped
files.

SKIP_LUN

The SKIP_LUN procedure reads datain an
open file and moves thefile pointer. It is useful
in situationswhere it is necessary to skip over a
known amount of datain afile without the
requirement of having the data availablein an
IDL variable.

SWAP_ENDIAN_INPLACE

The SWAP_ENDIAN_INPLACE procedure
reverses the byte ordering of arbitrary scalars,
arrays or structures. It can make “big endian”
number “little endian” and vice-versa. Note that
the BY TEORDER procedure can be used to
reverse the byte ordering of scalars and arrays
(SWAP_ENDIAN_INPLACE aso alows
structures).

Table 1-13: New Routines in IDL 5.6 (Continued)

What's New in IDL 5.6

New and Enhanced IDL Routines

110

Chapter 1: Overview of New Features in IDL 5.6

New Routine

Description

TRUNCATE_LUN

The TRUNCATE_LUN proceduretruncates the
contents of afile open for write access at the
current position of the file pointer. After this
operation, al data before the current file pointer
remains intact, and al data following the file
pointer are gone. The position of the current file
pointer is not atered.

WIDGET_COMBOBOX

The WIDGET_COMBOBOX function creates
“combobox” widgets, which are similar to
“droplist” widgets. The main difference
between the combobox widget and the droplist
widget isthat the text field of the combobox can
be made editable, allowing the user to enter a
value that is not on the list.

WIDGET_TAB

The WIDGET_TAB function isused to create a
tab widget. Tab widgets present adisplay area
on which different “pages’ (base widgets and
their children) can be displayed by selecting the
appropriate tab.

WIDGET_TREE

The WIDGET_TREE function is used to create
and populate a tree widget. The tree widget
presents a hierarchical view that can be used to
organize awide variety of data structures and
information.

Table 1-13: New Routines in IDL 5.6 (Continued)

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 111

IDL Routine Enhancements

Thefollowing isalist of new and updated keywords, arguments, and/or return values
to existing IDL routines.

ATAN
Keyword or item Description
PHASE If this keyword is set, and the argument is a complex

number Z, then the complex phase angleis computed as
ATAN(Imaginary(Z), Real_part(Z)). If this keyword is not
set then the complex arctangent is computed as described
above. If the argument is not complex, or if two arguments
are present, then this keyword is ignored.

Tip - Using the PHA SE keyword is equivalent to computing
ATAN(Imaginary(Z), Real_part(Z)), but uses less memory
and isfaster.

BESELI, BESELJ, BESELK, BESELY

Keyword or item Description

DOUBLE Set this keyword equal to oneto return a double-precision
result, or to zero to return asingle-precision result. The
computations will always be done using double precision.
The default isto return a single-precision result if both
inputs are single precision, and to return a double-precision
result in all other cases.

ITER Set this keyword equal to a named variable that will
contain the number of iterations performed. If the routine
converged, the stored value will be equal to the order N. If
Xor N arearrays, ITER will contain a scalar representing
the maximum number of iterations.

Note - If the routine did not converge for an element of X,
the corresponding element of the Result array will be set to
the | EEE floating-point value NaN, and ITER will contain
the largest order that would have converged for that X
value.

What's New in IDL 5.6 New and Enhanced IDL Routines

112

BETA

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

Complex input
arguments

The BETA function now accepts complex arguments.

COMPILE_OPT

Keyword or item

Description

STRICTARRSUBS
Option

Specifying STRICTARRSUBS will cause IDL to treat out-
of-range array subscripts within the body of the routine
containing the COMPILE_OPT statement as an error.

CURVEFIT

Keyword or item

Description

YERROR

Set this keyword to a named variable that will contain the
standard error between YFIT and Y.

DIGITAL_FILTER

Keyword or item

Description

DOUBLE

Set this keyword to use double-precision for computations
and to return adouble-precision result. Set DOUBLE=0 to
use single-precision for computations and to return a
single-precision result. The default is/DOUBLE if the
Flow input is double precision, otherwise the default is
DOUBLE=0.

ERF

Keyword or item

Description

Complex input
argument

The ERF function now accepts complex arguments.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6

ERFC

113

Keyword or item

Description

Complex Input
argument

The ERFC function now accepts complex arguments.

ERFCX

Keyword or item

Description

Complex input
argument

The ERFCX function now accepts complex arguments.

EXPINT

Keyword or item

Description

ITER

Set this keyword equal to a named variable that will
contain the actual number of iterations performed.

FILE_DELETE

Keyword or item

Description

ALLOW_NON- If set, FILE_DELETE will quietly ignore attempts to
EXISTENT delete anon-existent file. Other errorswill still be reported.
The QUIET keyword can be used instead to suppress all
errors.
VERBOSE The VERBOSE keyword causes FILE_DELETE to issue
an informative message for every fileit deletes.
GAMMA

Keyword or item

Description

Complex input
argument

The GAMMA function now accepts complex arguments.

What's New in IDL 5.6

New and Enhanced IDL Routines

114

GAUSSFIT

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

CHISQ Set this keyword to a named variable that will
contain the value of the chi-sguare goodness-of -
fit.

SIGMA Set this keyword to a named variable that will
contain the 1-sigmaerror estimates of the returned
parameters.

YERROR Set this keyword to a named variable that will
contain the standard error between YFIT and Y.

HELP

Keyword or item

Description

SHARED_MEMORY

Set this keyword to display information about all
current shared memory and memory mapped file
segments mapped into the current IDL processvia
the SHMMAP procedure.

HISTOGRAM

Keyword or item

Description

LOCATIONS

Set this keyword to a named variable in which to
return the starting locations for each bin. The
starting locations are given by MIN +
v*BINSIZE, withv=0,1,....NBINS-1.

L OCATIONS hasthe same number of elementsas
the Result, and has the same type as the input
Array.

IBETA

Keyword or item

Description

A may now be complex.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 115

Keyword or item Description

B may now be complex.

Z may now be complex. If Z is not complex then
the values must be in the range [0, 1].

IGAMMA
Keyword or item Description
A may now be complex.
z Z may now be complex. If Z is not complex then
the values must be greater than or equal to zero.
ISOCONTOUR
Keyword or item Description
C_LABEL_INTERVAL Set this keyword to a vector of valuesindicating

the distance (measured parametrically relative to
the length of each contour path) between labels
for each contour level. If the number of contour
levels exceeds the number of provided intervals,
the C_LABEL_INTERVAL vaueswill be
repeated cyclicaly. The default is 0.4.

C_LABEL_SHOW Set this keyword to a vector of integers. For each
contour value, if the corresponding value in the
C_LABEL_SHOW vector is hon-zero, the
contour line for that contour value will be labeled
(with the corresponding label information
returned viathe OUT_LABEL_POLYS,
OUT_LABEL_OFFSETS, and
OUT_LABEL_STRINGS keywords). If the
number of contour levels exceeds the number of
elementsin this vector, the C_ LABEL_SHOW
values will be repeated cyclically. The defaultisO
indicating that no contour levels will be labeled.

What's New in IDL 5.6 New and Enhanced IDL Routines

116

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

OUT_LABEL_OFFSETS

Set this keyword to a named variable that upon
return will contain a vector of offsets
(parameterized to the corresponding contour line)
indicating the positions of the contour labels.

Note- TheC_LABEL_SHOW keyword should be
specified if this keyword is used.

OUT_LABEL_POLYLINES

Set this keyword to a named variable that upon
return will contain a vector of polylineindices,
[PO, P1, ...], that indicate which contour lines are
labeled. Pi corresponds to the ith polyline
specified viathe Outconn argument. Note that if a
given contour line has more than one label along
its perimeter, then the corresponding polyline
index may appear more than once in the
LABEL_POLY S vector.

Note- TheC_LABEL_SHOW keyword should be
specified if this keyword is used.

OUT_LABEL_STRINGS

Set this keyword to a named variable that upon
return will contain a vector of strings, [strO, strl,
...], that indicate the |abel strings.

Note- TheC_LABEL_SHOW keyword should be
specified if this keyword is used.

KEYWORD_SET

Keyword or item

Description

Return value

The KEYWORD_SET function returns True (1)
if:
» Expressionisascalar or 1-element array with
anon-zero value.
» Expressionisastructure.
» Expressionisan ASSOC filevariable.

KEYWORD_SET returns False (0) if Expression
isundefined, or isascaar or 1-element array with
azerovaue.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 117

LNGAMMA
Keyword or item Description
Complex input argument The LNGAMMA function now accepts complex
arguments.
MAKE_DLL
Keyword or item Description
REUSE_EXISTING If this keyword is set, and the sharablelibrary file
specified by OutputFile already exists,
MAKE_DLL returnswithout building the
sharable library again. Use thiskeyword in
situations where you wish to ensure that a library
exists, but only want to build it if it does not.
Combining the REUSE_EXISTING and
DLL_PATH keywords allows you to get a path to
the library in a platform independent manner,
building the library only if necessary.
MEDIAN
Keyword or item Description
DIMENSION Set this keyword to the dimension over which to

find the median values of an array. If this keyword
isnot present or is zero, the median is found over
theentirearray and isreturned as ascalar value. If
this keyword is present and nonzero, theresultisa
“dlice” of theinput array that contains the median
value elements, and the return value will be an
array of one dimension less than the input array.

What's New in IDL 5.6 New and Enhanced IDL Routines

118 Chapter 1: Overview of New Features in IDL 5.6

SVDFIT

Keyword or item Description

SING_VALUES Set this keyword to a named variable in which to
return the singular values from the SVD. Singular
values which have been removed will be set to zero.

STATUS Set this keyword to anamed variable that will contain
the status of the computation. Possible vaues are:

e STATUS = 0: The computation was successful.

» STATUS > 0: Singular values were found and
were removed. STATUS contains the number of
singular values.

Note - If STATUS is not specified, any error
messages will be output to the screen.

TOL Set this keyword to the tolerance used when
removing singular values. The default is 10°° for
single precision, and 2x10"*? for double precision
(these defaults are approximately 100 and 10000
times the machine precisions for single and double
precision, respectively).

Setting TOL to alarger value may remove
coefficients that do not contribute to the solution,
which may reduce the errors on the remaining
coefficients.

SWAP_ENDIAN

Keyword or item Description

SWAP_IF_BIG_ENDIAN | If this keyword is set, the swap request will only be
performed if the platform running IDL uses “big
endian” byte ordering. On little endian machines, the
SWAP_ENDIAN request quietly returns without
doing anything. Note that this keyword does not refer
to the byte ordering of the input data, but to the
computer hardware.

New and Enhanced IDL Routines What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 119

Keyword or item

Description

SWAP IF_LITTLE
ENDIAN

If this keyword is set, the swap request will only be
performed if the platform running IDL uses“little
endian” byte ordering. On big endian machines, the
SWAP_ENDIAN request quietly returns without
doing anything. Note that this keyword does not refer
to the byte ordering of the input data, but to the
computer hardware.

WIDGET_BASE

Keyword or item

Description

TLB_ICONIFY_EVENTS

Set this keyword when creating a top-level base to
make that base return an event when the baseis
iconified or restored by the user.

TLB_MOVE_EVENTS

Set this keyword when creating a top-level base to
make that base return an event when the baseis
moved on the screen by the user.

TOOLBAR

Set this keyword to indicate that the base is used to
hold bitmap buttons that make up a toolbar.

Note - Setting this keyword does not cause any
changesin behavior; its only affect isto dlightly alter
the appearance of the bitmap buttons on the base for
cosmetic reasons.

Note - On Motif platforms, if bitmap buttonsareon a
toolbar base that is also EXCLUSIVE or
NONEXCLUSIVE, they will not have a separate
“toggle” indicator, they will be grouped closely
together, and will have a two-pixel shadow border.

Note - This keyword has no effect on Windows
platforms.

What's New in IDL 5.6

New and Enhanced IDL Routines

120

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

Iconify Event Structure

Top-level widget bases return the following event
structure when the base isiconified or restored and
the base was created with the
TLB_ICONIFY_EVENTS keyword set:

{ WDGET_TLB_ | CONI FY, | D OL, TOP:OL,
HANDLER OL, | CONIFIED: 0 }

ID isthe widget ID of the base generating the event.
TOP isthe widget ID of the top level widget
containing ID. HANDLER contains the widget ID of
the widget associated with the handler routine.
ICONIFIED is 1 (one) if the user iconified the base
and 0O (zero) if the user restored the base.

Move Event Structure

Top-level widget bases return the following event
structure when the base is moved and the base was
created with the TLB_MOVE_EVENTS keyword
set:

{ WDGET_TLB _MOVE, ID:OL, TOP:OL,
HANDLER OL, X:OL, Y:OL }

ID isthe widget ID of the base generating the event.
TOP isthe widget ID of the top level widget
containing ID. HANDLER contains the widget ID of
the widget associated with the handler routine. X and
Y are the new location of the top left corner of the
base.

Note - On Windows, move events are generated while
dragging. On UNIX, move events are generated only
on the mouse-up.

Note - If both TLB_SIZE_EVENTS and
TLB_MOVE_EVENTS are enabled, a user resize
operation that causes the top left corner of the base to
move will generate both a move event and aresize
event.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 121

WIDGET_BUTTON

Keyword or item

Description

CHECKED_MENU

Set this keyword on a menu entry button to enable the
ability to place a check or selection box next to the menu
entry. The parent widget of the button must be either a
button widget created with the MENU keyword or abase
widget created with the CONTEXT_MENU keyword.

TOOLTIP

Set this keyword to astring that will be displayed when the
cursor hovers over the widget. For UNIX platforms, this
string must be non-zero in length.

WIDGET_CONTROL

Keyword or item

Description

COMBOBOX _
ADDITEM

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to astring that specifiesa new item to add
to the list of the combobox. By default, the item will be
added to the end of the list. The item can be added to a
specified position in the list by setting the
COMBOBOX_INDEX keyword in the same call to
WIDGET_CONTROL.

COMBOBOX _
DELETEITEM

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based
index of the combobox element to be deleted from thelist.
If the specified element is outside the range of existing
elements, no element is deleted.

What's New in IDL 5.6

New and Enhanced IDL Routines

122 Chapter 1: Overview of New Features in IDL 5.6

Keyword or item Description
COMBOBOX _ This keyword applies to widgets created with the
INDEX WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based
index at which a new item will be added to the list when
using the COMBOBOX_ADDITEM keyword. If the
supplied index is outside the range of zero to the length of
the existing list, the item is not added to the list.

Note - You can retrieve the length of the existing list using
the COMBOBOX_NUMBER keyword to
WIDGET_INFO.

DRAW _KEY- This keyword applies to widgets created with the
BOARD_EVENTS WIDGET_DRAW function.

Set this keyword equal to 1 (one) or 2 to make the draw
widget generate an event when it has the keyboard focus
and akey is pressed or released. (The method by which a
widget receives the keyboard focus is dependent on the
window manager in use.) The value of the key pressed is
reported in either the CH or the KEY field of the event
structure, depending on the type of key pressed.

* If thiskeyword is set equal to 1, the draw widget will
generate an event when a*“normal” key is pressed.
“Normal” keysinclude all keys except function keys
and the modifier keys: SHIFT, CONTROL, CAPS LOCK,
and ALT. If amodifier key is pressed at the same time
asanormal key, the value of the modifier key is
reported in the MODI FI ERS field of the event structure.

* If thiskeyword is set equal to 2, the draw widget will
generate an event when either anormal key or a
modifier key is pressed. Values for modifier keys are
reported in the KEY field of the event structure, and the
MODI FI ERS field contains zero.

Note - Keyboard events are never generated for function
keys.

New and Enhanced IDL Routines What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 123

Keyword or item

Description

SET_BUTTON

This keyword applies to widgets created with the
WIDGET_BUTTON function.

Thiskeyword changesthe current state of toggle buttons. If
set equal to zero, every toggle button in the hierarchy
specified by Widget_ID is set to the unselected state. If set
to anonzero value, the action depends on the type of base
holding the buttons.

SET_COMBOBOX_
SELECT

This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to an integer that specifies the zero-based
index of the combobox list element to be displayed. If the
specified element is outside the range of existing elements,
the sel ection remains unchanged.

SET_TAB_
CURRENT

This keyword applies to widgets created with the
WIDGET_TAB function.

Set thiskeyword equal to the zero-based index of thetab to
be set as the current (visible) tab. If theindex valueis
invalid, the value is quietly ignored.

What's New in IDL 5.6

New and Enhanced IDL Routines

124

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

SET_TAB_
MULTILINE

This keyword applies to widgets created with the
WIDGET_TAB function.

This keyword controls how tabs appear on the tab widget
when all of the tabs do not fit on the widget in asingle row.
This keyword behaves differently on Windows and Motif
systems.

Windows

Set this keyword to cause tabs to be organized in a multi-
line display when the width of the tabs exceeds the width
of thelargest child base widget. If possible, IDL will create
tabs that display the full tab text.

If MULTILINE=0 and LOCATION=0 or 1, tabs that
exceed the width of the largest child base widget are shown
with scroll buttons, allowing the user to scroll through the
tabs while the base widget staysimmobile.

If LOCATION=1or 2, amultilinedisplay isaways used if
the tabs exceed the height of the largest child base widget.

UNIX

Set this keyword equal to an integer that specifies the
maximum number of tabsto display per row in the tab
widget. If this keyword is not specified (or isexplicitly set
equal to zero) all tabs are placed in asingle row.

SET_TREE_
BITMAP

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword egual to a16x16x3 array representing an
RGB image that will be displayed next to the node in the
tree widget.

Set this keyword equal to zero to revert to the appropriate
default system bitmap.

SET_TREE_
EXPANDED

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword equal to anonzero value to expand the
specified tree widget folder. Set this keyword equal to zero
to collapse the specified tree widget folder.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 125

Keyword or item

Description

SET_TREE_
SELECT

This keyword applies to widgets created with the
WIDGET_TREE function.

This keyword has two modes of operation, depending on
the widget 1D passed to WIDGET_CONTROL.

If the specified widget ID is for the root node of the tree
widget (the tree widget whose Parent is a base widget):

* |f the tree widget isin multiple-selection mode and
SET_TREE_SELECT is set to an array of widget IDs
corresponding to tree widgets that are nodesin thetree,
those nodes are selected.

* |f the tree widget is not in multiple-selection mode and
SET_TREE_SELECT is set to asingle widget ID
corresponding to atree widget that isanodein thetree,
that node is selected.

* |f the keyword is set to zero, all selectionsin the tree
widget are cleared.

If the specified widget I D isatree widget that isanodein a
tree:

* |f the keyword is set to a nonzero value, the specified
node is selected.

* |If the keyword is set to zero, the specified nodeis
desel ected.

Note - If the tree widget isin multiple-selection mode, the
sel ection changes made to the tree widget via this keyword
are additive — that is, the current selections are retained
and any additional nodes specified by
SET_TREE_SELECT are also selected.

What's New in IDL 5.6

New and Enhanced IDL Routines

126

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

SET_TREE_
VISIBLE

This keyword applies to widgets created with the
WIDGET_TREE function and whose parent widget was
also created using the WIDGET_TREE function (that is,
tree widgets that are nodes of another tree).

Set this keyword to make the specified tree node visible to
the user. Setting this keyword has two possible effects:

1. If the specified node isinside a collapsed folder, the
folder and all folders above it are expanded to reveal
the node.

2. If the specified nodeisin aportion of the tree that is
not currently visible because the tree has scrolled
within the parent base widget, the tree view scrolls so
that the selected node is at the top of the base widget.

Use of this keyword does not affect the tree widget
selection state.

TABLE_BLANK

This keyword applies to widgets created with the
WIDGET_TABLE function.

Set this keyword equal to anonzero value to cause the
specified cellsto be blank. Set this keyword equal to zero
to cause the specified cellsto display values as usual.

If the USE_TABLE_SELECT keyword is set equal to one,
the currently selected cells are blanked or restored. If

USE TABLE_SELECT isset equal to an array, the
specified cells are blanked or restored. If
USE_TABLE_SELECT isnot set, theentiretableis
blanked or restored.

TABLE_DISJOINT

This keyword applies to widgets created with the

SELECTION WIDGET_TABLE function.
Set this keyword to enable the ability to select multiple
rectangular regions of cells.
TLB_ICONIFY _ This keyword applies to widgets created with the
EVENTS WIDGET_BASE function.

Set this keyword to make the top-level base return an event
when the base is iconified or restored by the user.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 127

Keyword or item

Description

TLB_MOVE._
EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set thiskeyword to make the top-level base return an event
when the base is moved by the user. Note that if
TLB_SIZE_EVENTS are also enabled, a user resize
operation that causes the top left corner of the base widget
to movewill generate both amove event and aresize event.

TLB_SIZE_
EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set thiskeyword to make the top-level base return an event
when the base is resized by the user. Note that if
TLB_MOVE_EVENTS are also enabled, a user resize
operation that causes the top left corner of the base widget
to movewill generate both amove event and aresize event.

TOOLTIP

This keyword applies to widgets created with the
WIDGET_BUTTON and WIDGET_DRAW functions.

Set thiskeyword to astring that will be displayed when the
cursor hovers over the specified widget. For UNIX
platforms, this string must be non-zero in length, which
meansthat atooltip can be modified but not be removed on
UNIX versions of IDL.

What's New in IDL 5.6

New and Enhanced IDL Routines

128

WIDGET_DRAW

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

KEYBOARD_EVENTS

Set thiskeyword equal to 1 (one) or 2 to make
the draw widget generate an event when it has
the keyboard focus and akey is pressed or
released. (The method by which awidget
receives the keyboard focus is dependent on
thewindow manager in use.) Thevalue of the
key pressed is reported in either the CH or the
KEY field of the event structure, depending on
the type of key pressed.

* |If thiskeyword isset equal to 1, the draw
widget will generate an event when a
“normal” key is pressed. “Normal” keys
include all keys except function keysand
the modifier keys: SHIFT, CONTROL,
CapsLock, and ALT. If amodifier key is
pressed at the same time as anormal key,
the value of the modifier key is reported
in the MODI FI ERS field of the event
structure.

* |If thiskeyword is set equal to 2, the draw
widget will generate an event when either
anormal key or amodifier key ispressed.
Values for modifier keys are reported in
the KEY field of the event structure, and
the MODI FI ERS field contains zero.

Note - Keyboard events are never generated
for function keys.

TOOLTIP

Set this keyword to astring that will be
displayed when the cursor hovers over the
widget. For UNIX platforms, this string must
be non-zero in length.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 129

WIDGET_INFO
Keyword or item Description
BUTTON_SET This keyword applies to widgets created with the

WIDGET_BUTTON function.

Set thiskeyword to return the “ set” state of awidget
button. If the button is currently set, 1 (one) is
returned. If the button is currently not set, O (zero) is
returned. This keyword is intended for use with
exclusive, non-exclusive and checked menu buttons.

COMBOBOX_GETTEXT | This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to return the current text from the
text box of the specified combobox widget. Note
that when using an editable combobox, the text
displayed in the text box may not be an item from
the list of values in the combobox list. To obtain the
index of the selected item, inspect the INDEX field
of the event structure returned by the combobox
widget.

COMBOBOX_NUMBER | This keyword applies to widgets created with the
WIDGET_COMBOBOX function.

Set this keyword to return the number of elements
currently contained in thelist of the specified
combobox widget.

FONTNAME This keyword appliesto all widgets.

Set this keyword to return a string containing the
name of the font being used by the specified widget.
The returned name can then be used when creating
other widgets or with the SET_FONT keyword to
the DEVICE procedure.

What's New in IDL 5.6 New and Enhanced IDL Routines

130 Chapter 1: Overview of New Features in IDL 5.6

Keyword or item Description

MAP This keyword appliesto all widgets.

Set this keyword to return True (1) if the widget
specified by Widget_ID ismapped (visible), or False
(0) otherwise. Note that when abase widget is
unmapped, all of its children are unmapped. If
WIDGET_INFO reports that a particular widget is
unmapped, it may be because a parent in the widget
hierarchy has been unmapped.

SENSITIVE This keyword appliesto all widgets.

Set this keyword to return True (1) if the widget
specified by Widget_|D is sensitive (enabled), or
False (0) otherwise. Note that when a base is made
insensitive, all its children are made insensitive. If
WIDGET_INFO reports that a particular widget is
insensitive, it may be because a parent in the widget
hierarchy has been made insensitive.

TAB_CURRENT This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword to return the zero-based index of
the current tab in the tab widget.

TAB_MULTILINE This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword to return the current setting of the
multi-line mode for the tab widget.

TAB_NUMBER This keyword applies to widgets created with the
WIDGET_TAB function.

Set this keyword to return the number of tabs
contained in the tab widget.

TABLE_DISJOINT _ This keyword applies to widgets created with the
SELECTION WIDGET_TABLE function.

Set this keyword to return 1 (one) if the widget
specified by Widget_|D has disjoint selection
enabled. Otherwise, O (zero) is returned.

New and Enhanced IDL Routines What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 131

Keyword or item

Description

TLB_ICONIFY_EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to return 1 if the top-level base
widget specified by Widget_ID is set to return
iconify events. Otherwise, O isreturned.

TLB_MOVE_EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to return 1 if the top-level base
widget specified by Widget_ID is set to return move
events. Otherwise, O isreturned.

TLB_SIZE_EVENTS

This keyword applies to widgets created with the
WIDGET_BASE function.

Set this keyword to return 1 if the top-level base
widget specified by Widget_ID is set to return resize
events. Otherwise, O isreturned.

TOOLTIP

This keyword applies to widgets created with the
WIDGET_BUTTON and WIDGET_DRAW
functions.

Set this keyword to have the WIDGET_INFO
function return the text of thetooltip of the widget. If
the widget does not have atooltip, anull string will
be returned.

TREE_EXPANDED

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword to return 1 (one) if the specified
tree widget node is afolder that is expanded, or O
(zero) if the specified node isafolder that is
collapsed.

Note - Only tree widget nodes created with the
FOLDER keyword can be expanded or collapsed.
This keyword will always return 0 (zero) if the
specified tree widget node is not a folder.

What's New in IDL 5.6

New and Enhanced IDL Routines

132

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

TREE_ROOT

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword to return the widget ID of the root
node of the tree widget hierarchy of which Widget
ID isapart. The root node is the tree widget whose
parent is a base widget.

TREE_SELECT

This keyword applies to widgets created with the
WIDGET_TREE function.

Set this keyword to return information about the
nodes selected in the specified tree widget. This
keyword has two modes of operation, depending on
the widget ID passed to WIDGET_INFO:

* |f the specified widget ID isfor the root node of
the tree widget (the tree widget whose Parent is
a base widget), this keyword returns either the
widget ID of the selected node or (if multiple
nodes are selected) an array of widget 1Ds of the
selected nodes. If no nodes are selected, -1 is
returned.

* |f the specified widget ID isatree widget that is
anodein atree, this keyword returns 1 (one) if
the node is selected or O (zero) if it isnot
selected.

VISIBLE

This keyword appliesto all widgets.

Set this keyword to return True (1) if the widget
specified by Widget_ID isvisible, or False (0)
otherwise. A widget isvisibleif:

* it hasbeenredlized,
* itand all of its ancestors are mapped.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 133

WIDGET_LABEL

Keyword or item Description

SUNKEN_FRAME Set this keyword to create a three dimensional,
bevelled border around the |abel widget. The
resulting frame gives the label a*“ sunken”
appearance, similar to what is often seenin
application status bars.

WIDGET_TABLE

Keyword or item Description

DISIOINT_SELECTION Set this keyword to enable the ability to select
multiple rectangular regions of cells. The regions
can be overlapping, touching, or entirely distinct.

Setting this keyword changes the data structures
returned by the TABLE_SELECT keyword to
WIDGET_INFO and the GET_VALUE keyword to
WIDGET_CONTROL. Similarly, thedatastructures
you supply viathe SET_TABLE_SELECT and
SET_VALUE keywordsto WIDGET_CONTROL
are different in disoint mode.

WRITE_TIFF
Keyword or item Description
COMPRESSION Set thiskeyword to select the type of compression to
be used:
» 0= none (default)
» 2 =PackBits

. 3=JPEG (ITIFF files)

What's New in IDL 5.6 New and Enhanced IDL Routines

134

XROI

Chapter 1: Overview of New Features in IDL 5.6

Keyword or item

Description

X_SCROLL_SIZE

Set this keyword to the width of the scroll
window. If this keyword is larger than the
image width then it will be set to the image
width. The default is to use the image width
or the screen width, whichever is smaller.

Y_SCROLL_SIZE

Set this keyword to the height of the scroll
window. If this keyword is larger than the
image height then it will be set to the image
height. The default is to use the image height
or the screen height, whichever is smaller.

New and Enhanced IDL Routines

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 135

ION 1.6 Enhancements

ION (IDL On the Net) is now released with IDL. ION Script and ION Java are
packages for publishing IDL-driven applications on the Web. They are now included
onthe DL CD asan optional feature. An extra-cost ION licenseis required to use
ION Script and ION Java. For more information on ION, see “Introduction to ION”
in the ION manual.

ION Script Enhancements

This section discusses the following new features and enhancementsin ION Script
1.6

* New ION_OBJECT Tag
* New FORMAT Attribute For ION Script Variables

e |ON_EVALUATE and ION_VARIABLE Can Now Be Used Inside <IDL>
Blocks

* New Support For MULTIPLE Attribute In HTML SELECT Tag
* New Example For Passing Data From IDL to ION Script

New ION_OBJECT Tag

In1ON Script 1.4, it was only possible to embed IDL-generated text (via
ION_DATA_OUT) and 2-D images (vialON_IMAGE) in your Web application. IDL
is capable of generating (and Web servers are capabl e of passing) numerous types of
data, such as VRML, MPEG and WAV. With the addition of the ION_OBJECT tag,
ION_PARAM tag, and $ION.IDLURL system variablein ION 1.6, it is now possible
to embed in your Web application any type of datathat IDL can generate or locate.

For more information and examples, see “ION_OBJECT” in Chapter 5 of the ION
Script User’s Guide manual.

New FORMAT Attribute For ION Script Variables

The |ON_EVALUATE and ION_VARIABLE tags now support aFORMAT attribute,
which alows you to specify the format of your variable using a C-style printf()
format specifier.

For more information, see the description of the FORMAT attribute for
“ION_EVALUATE” or “ION_VARIABLE" in Chapter 5 of the ION Script User’s
Guide manual.

What's New in IDL 5.6 ION 1.6 Enhancements

136 Chapter 1: Overview of New Features in IDL 5.6

ION_EVALUATE and ION_VARIABLE Can Now Be Used Inside
<|DL> Blocks

In1ON 1.4, the only part of an <IDL> block that was evaluated by the ION Script
parser before sending the datato IDL was ION Script variables. In ION 1.6, you can
now include ION_EVALUTE and ION_VARIABLE tagsinside an <IDL> block.
These tags are first evaluated by the parser, then ION Script variables are evaluated.
Thisalowsyou to format ION Script variables before sending them to IDL.

See“Using ION_EVALUTE and ION_VARIABLE Tagsin an IDL Block” in
Chapter 5 of the ION Script User’s Guide manual for an example.
New Support For MULTIPLE Attribute In HTML SELECT Tag

When the MULTIPLE attribute is specified for the HTML <SELECT> tag, the user is
allowed to select multiple options. Suppose a user submits a form after selecting the
following optionsin a SELECT element named Region:

Figure 1-9: Example of Using the MULTIPLE Attribute

When the user submits the ION_FORM, the URL sent to the server takes the
following form:

http://host/cgi-bin/ion-p. exe?Regi on=East &Regi on=Wést

In ION 1.4, the $Form variable created on the page that is loaded when thisform is
submitted would contain the value “West” (the last value for Region specified in the
query string). In ION 1.6, the $Form variable created for aSELECT element contains
the value of all selected options, separated by the “|" character. Therefore, in the
above example, the value of the $Form variable $Form.Region would be “ East|West”
if the user selected the “East” and “West” options and submitted the form.

For more information and examples, see “Handling Multiple Selectionsin aSELECT
Element” in Chapter 4 of the ION Script User’s Guide manual.

ION 1.6 Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 137

New Example For Passing Data From IDL to ION Script

A new exampleillustrating how to pass datafrom IDL to ION Script has been added
to the Advanced examples page. L oad the page index_examples.ion, and click the
“Passing IDL Variablesto ION Script Example” link.

ION Java Enhancements

This section discusses the following new features and enhancementsin ION Java 1.6:
* IONGr2Canvas Class Now Obsolete
e IDL Command Execution Status Now Properly Reported
* New IONVariable Methods Return Dimensioned Results
* New Supported Keywords for Contours, Maps, Plots, and Surfaces

IONGr2Canvas Class Now Obsolete

Because there is a more efficient method for accessing IDL Object Graphicsin ION
Java, the IONGr2Canvas class has been obsoleted. See “ Object Graphicsin ION” in
Chapter 5 of the ION Java User’s Guide manual for details on how to use Object
Graphicsin ION Java.

You can also run the Object Graphics example on the advanced. ht M pagein the
i dl 56\ product s\ion16\ion_j ava\ exanpl es directory (Windows) or

i dl _5.6/products/ion_1.6/ion_javal/ exanpl es directory (UNIX) of your
IDL installation.

IDL Command Execution Status Now Properly Reported

The executel DL Command() method of the IONCallableClient,

I ONGrConnection/IONJGrConnection, and IONGrDrawable/| ONJGrDrawable
classes have been fixed so that they properly return the execution status of IDL
commands. If the IDL command executes successfully, the executel DL Command()
method returns 0. If the IDL command does not execute successfully, the

executel DLCommand() method returns the value of the 'ERROR IDL system
variable.

What's New in IDL 5.6 ION 1.6 Enhancements

138 Chapter 1: Overview of New Features in IDL 5.6

New IONVariable Methods Return Dimensioned Results

In prior versions of ION Java, the getByteArray(), getComplexArray(),
getDoubleArray(), getFloatArray(), getintArray(), getShortArray(), and
getStringArray() methods of the IONVariable class were used to get arrays for the
specified variable. The result of these methodsis a one-dimensional array, even if the
variable contains two or more dimensions. Using these methods, the ION Java
programmer must reformat the array into the proper number of dimensions.

The following new methods of IONVariable are provided to eliminate the need to
manually reformat the array. These methods return an array with the same number of
dimensions as the variable:

* getDimensionedByteArray()

« getDimensionedDoubleArray()
« getDimensionedFloatArray()

e getDimensionedintArray()

e getDimensionedShortArray()

New Supported Keywords for Contours, Maps, Plots, and
Surfaces

The IONGrContour, IONGrMap, IONGrMapContinents, IONGrMapGrid,
IONGrMaplmage, IONGrPlot, and IONGrSurface classes now support additional
keywords of the IDL CONTOUR, MAP_SET, MAP_CONTINENTS, MAP_GRID,
MAP_IMAGE, PLOT, and SURFACE procedures, respectively.

See the following sections in Chapter 6, “ION Java Class and Method Reference” in
the ION Java User’s Guide manual for alist of the keywords supported by each class:

« |ONGrContour—Properties Supported
IONGrM ap—Properties Supported

* |ONGrMapContinents—Properties Supported
* |ONGrMapGrid—Properties Supported

* |ONGrMaplmage—Properties Supported

¢ |ONGrP ot—Properties Supported

* |ONGrSurface—Properties Supported

ION 1.6 Enhancements What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 139

Routines Obsoleted in IDL 5.6

The following routines were present in IDL Version 5.5 but became obsolete in
Version 5.6. These routines have been replaced with a new keyword to an existing
routine or by a new routine that offers enhanced functionality. These obsoleted
routines should not be used in new IDL code.

Routine Replaced By
VAX_FLOAT VAX_FLOAT keyword to OPEN
HDF_VD_GETNEXT HDF_VG_GETNEXT

What's New in IDL 5.6 Routines Obsoleted in IDL 5.6

140

Chapter 1: Overview of New Features in IDL 5.6

Requirements for this Release

IDL 5.6 Requirements

Hardware Requirements for IDL 5.6

The following table describes the supported platforms and operating systems for IDL

5.6
Platform | Vendor Hardware Og;sr?éirgg S\l/Jeprr;ioor;[]eSd
Windows | Microsoft | Intel x86 Windows 98
Intel x86 Windows NT | 4.0, 2000, XP

Macintosh | Apple PowerMac G4 | Mac OS X 10.1, 10.2.xt
UNIXt Compag | Alpha64-bit Tru64 UNIX | 5.1

HP PA-RISC 32-bit | HP-UX 11.0

HP PA-RISC 64-bit | HP-UX 11.0

IBM RS/6000 32-hit | AIX 51

IBM RS/6000 64-bit | AIX 51

Intel Intel x86 Linux Red Hat 7.11t

SGI Mips 32-bit IRIX 6.5.1

SGI Mips 64-bit IRIX 6.5.1

SUN SPARC 32-bit | Solaris 8

SUN SPARC 64-bit | Solaris 8

Table 1-14: Hardware Requirements for IDL 5.6.

On platforms that provide 64-bit support, IDL can be run as either a 32-bit or a 64-bit
application. Both versions are installed, and the 64-bit version is the default. The
32-bit version can be run by specifying the - 32 switch at the command line:

%id -32

Requirements for this Release

What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 141

t For UNIX (including Mac OS X), the supported versions indicate that IDL was
either built on (the lowest version listed) or tested on that version. You caninstall and
run IDL on other versions that are binary compatible with those listed.

t1 IDL 5.6 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and

run IDL on your version.

Software Requirements for IDL 5.6

The following table describes the software requirements for IDL 5.6:

Platform

Software Requirements

Windows

Internet Explorer 5.0 or higher.

Macintosh

XFree86 version 4.2 (XDarwin 1.0.6.) which is
included on the IDL 5.6 product CD.

Table 1-15: Software Requirements for IDL 5.6

What's New in IDL 5.6

Requirements for this Release

142 Chapter 1: Overview of New Features in IDL 5.6

ION 1.6 Requirements

Hardware Requirements for ION 1.6

The following table describes the supported platforms and operating systemsfor ION

1.6
Platform | Vendor Hardware Ogisr?:rgg S\l;grgfor;esd
Windows | Microsoft | Intel x86 Windows NT | 4.0, 2000, XP
UNIXT Intel Intel x86 Linux Red Hat 7.1t
SGI Mips 32-bit IRIX 6.5.1
SUN SPARC 32-bit | Solaris 8

Table 1-16: Hardware Requirements for IDL 5.6.

T For UNIX, the supported versions indicate that ION was either built on (the lowest
version listed) or tested on that version. You caninstall and run ION on other versions
that are binary compatible with those listed.

11 1ON 1.6 was built on the Linux 2.4 kernel with gl i bc 2.2 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run ION 1.6 on your version.

Web Servers

In order to use ION, you must install an HTTP Web server. ION has been tested with
the following Web server software:

» Apache Web Server version 2.0 or higher for Windows, Linux, and Solaris.

* Apache Web Server version 1.3.14 for IRIX. Thisversion isincluded with the
IRIX operating system.

* Microsoft Internet Information Server (11S) version 4 for Windows NT 4.0
Server, version 5.0 for Windows 2000 Server and version 5.1 for Windows XP
Professional .

Requirements for this Release What's New in IDL 5.6

Chapter 1: Overview of New Features in IDL 5.6 143

If you do not already have Web server software, the IDL 5.6 CD-ROM contains the
following Apache Web Server software:

* Windows— Version 2.0.40
e Linux — Version 2.0.40

* Solaris— Version 2.0.39

e [RIX —Version1.3.14

Note
For more information on Apache software for your platform, see
http://www.apache.org.

Web Browsers

ION 1.6 supportsthe HTTP 1.0 protocol. The following are provided as examples of
popular Web browsers that support HTTP 1.0:

» Netscape Navigator versions 4.7 and 6.0.
* Microsoft Internet Explorer versions 5.5 and 6.0.

Browsersdiffer in their support of HTML features. Aswith any Web application, you
should test your ION Script or Java application using Web browsers that anyone
accessing your application islikely to be using.

Java Virtual Machines

ION 1.6 supports the following Java Virtual Machines:
* SunJVM 12,13and1.4
* Microsoft VM 5.x

The following are provided as examples of popular Web browsers that are shipped
with the above IV Ms:

* Netscape Navigator versions 4.7 and 6.0.
* Microsoft Internet Explorer versions 5.5 and 6.0.

Browsers differ in their support of features. Aswith any Web application, you should
test your ION Java application using Web browsers that anyone accessing your
applicationislikely to be using.

What's New in IDL 5.6 Requirements for this Release

http://www.apache.org

144 Chapter 1: Overview of New Features in IDL 5.6

Windows 98 Platform Support Ending

IDL 5.6 will be the last release to support the Windows 98 platform. We recommend
that you consider upgrading to alater rel ease of Microsoft Windowsto be ableto run
future versions of IDL.

RSl is committed to supporting our customers with their varied platform
requirements while maintaining financially sound business practices. Our goal
isto communicate platform support plansin atimely fashion in order to alow
you ample time to make well informed platform decisions.

Windows 98 Platform Support Ending What's New in IDL 5.6

Chapter 2:

New IDL Objects and
Methods

This chapter describes new objects and new methods to existing objectsintroduced in IDL 5.6

IDLfEXMLSAX object 146 IDLgrContour object

What's New in IDL 5.6

145

146 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX object

AnIDLffXMLSAX object usesan XML SAX level 2 parser. The XML parser alows
you to read an XML file and store arbitrary data from the filein IDL variables. The
parser object’s methods are callbacks. These methods are called automatically when
the parser encounters different types of XML elements or attributes.

Note
To usethe XML parser, you must write asubclass of thisobject class, overriding the
object methods as necessary to process the datain a specific XML file or files. See
Chapter 22, “Using the XML Parser Object Class’ in the Building IDL Applications
manual for further information and examples.

The IDLffXMLSAX object encapsul ates the Xerces validating XML parser; see
http://xnl . apache. or g for details.

Superclasses
This class has no superclass.

Subclasses

You must write a subclass of this object, overriding object methods as necessary to
retrieve information from the XML file.

Creation
See “IDLfIXMLSAX::Init” on page 167

Methods

Intrinsic Methods

This class has the following methods:
e IDLffXMLSAX::AttributeDecl
e |IDLffXMLSAX::Characters
e IDLffXMLSAX::Cleanup
e |IDLFfXMLSAX::Comment

IDLffXMLSAX object What's New in IDL 5.6

http://xml.apache.org

Chapter 2: New IDL Objects and Methods

IDLIfXMLSAX::
IDLIfXMLSAX::
IDLFfXMLSAX::
IDLFfXMLSAX::
IDLIfXMLSAX::
IDLFfXMLSAX::
IDLIfXMLSAX::
IDLFfXMLSAX::
IDLFfXMLSAX::
IDLIfXMLSAX::
IDLFfXMLSAX:
IDLFfXMLSAX::
IDLIfXMLSAX::
IDLFfXMLSAX::
IDLIfXMLSAX::
IDLIfXMLSAX::
IDLIfXMLSAX::
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLFfXMLSAX:
IDLIfXMLSAX::
IDLFfXMLSAX:

What's New in IDL 5.6

ElementDecl
EndCDATA
EndDocument
EndDTD
EndElement
EndEntity
EndPrefixMapping
Error

External EntityDecl
FatalError

:GetProperty

Ignorabl éW hitespace
Init

Internal EntityDecl
NotationDecl
ParseFile

Processingl nstruction

:SetProperty
:SkippedEntity
:StartCDATA
:StartDocument
:StartDTD
:StartElement
:StartEntity
:StartPrefixM apping
:StopParsing

UnparsedEntityDecl

‘Warning

147

IDLffXMLSAX object

148 Chapter 2: New IDL Objects and Methods

Version History

Introduced: 5.6

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 149

IDLFffXMLSAX::AttributeDecl

The IDLffXMLSAX::AttributeDecl procedure method is called when the parser
detectsan <! ATTLI ST ... > declarationinaDTD. This method is called once for
each attribute declared by the tag.

Syntax
Obj - > [IDLffXMLSAX::]AttributeDecl, eName, aName, Type, Mode, Value
Arguments
eName
A named variable that will contain the name of the element for which the attributeis
being declared.
aName

A named variable that will contain the name of the attribute being declared.

Type

A named variable that will contain a string that specifies the type of attribute being
defined. Possible values are:

* 'CDATA'

« 'ID

* 'IDREF

* 'IDREFS

* 'NMTOKEN'
* 'NMTOKENS
« 'ENTITY'

« 'ENTITIES

or two types of enumerated values. Enumerated values are encoded with
parenthesized strings such as (a| b| ¢) toindicate that strings a, b, or c are
permissible. If the string is an enumeration of notation names, the string

" NOTATI ON " (note the space after the second “N") precedes the parenthesized
string.

What's New in IDL 5.6 IDLffXMLSAX object

150 Chapter 2: New IDL Objects and Methods

Mode

A named variable that will contain a string that specifies restrictions on the value of
the attribute. Possible values are:

* '#IMPLIED' - the application determines the value
* '#REQUIRED' - the value must be given; defaulting is not permitted
» '#FIXED' - only one value is permitted

* "-anull string (the value specified by the Value argument is used as the
default)

Value

A named variable that will contain the default value for the attribute. If Value
contains a null string, no default value was specified.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 151

IDLffXMLSAX::Characters

The IDLffXMLSAX::Characters procedure method is called when the parser detects
text in the parsed document.

Syntax
Obj - > [IDLffXMLSAX::]Characters, Chars
Arguments
Chars

A named variable that will contain the text detected by the parser.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

152 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX::Cleanup

The IDLffXMLSAX::Cleanup procedure method performs al cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object destruction. In most cases, you cannot call the Cleanup method
directly. However, one exception to this rule does exist. If you write your own
subclass of this class, you can call the Cleanup method from within the Cleanup
method of the subclass.

Syntax

OBJ_DESTROY, Obj
or

Obj - > [IDLffXMLSAX::]Cleanup (Only in subclass’ Cleanup method.)
Arguments

None.
Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 153

IDLFffXMLSAX::Comment

The IDLffXMLSAX::Comment procedure method is called when the parser detects a
comment section of theform<!-- ... -->.

Syntax
Obj - > [IDLffXMLSAX::]Comment, Comment
Arguments

Comment

A named variable that will contain the text within the detected comment section,
without the delimiting characters (“<! - -" and “- - >"

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

154

Chapter 2: New IDL Objects and Methods

IDLFffXMLSAX::ElementDecl

The IDLffXMLSAX::ElementDecl| procedure method is called when the parser
detectsan <! ELEMENT . .. > declarationinthe DTD.

Syntax

Obj - > [IDLffXMLSAX::]ElementDecl, Name, Model
Arguments

Name

A named variable that will contain the name of the element.

Model

A named variable that will contain the content model (sometimes called the content
specification) for the element, with all whitespace removed.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 155

IDLfEXMLSAX::EndCDATA

The IDLffXMLSAX::EndCDATA procedure method is called when the parser
detects the end of a<[CDATA[. . .]] > text section.

Syntax

Obj - > [IDLffXMLSAX::]JEndCDATA
Arguments

None.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

156 Chapter 2: New IDL Objects and Methods

IDLFffXMLSAX::EndDocument

The IDLffXMLSAX::EndDocument procedure method is called when the parser
detects the end of the XML document.

Syntax

Obj - > [IDLffXMLSAX::]JEndDocument
Arguments

None.
Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 157

IDLffXMLSAX::EndDTD

The IDLffXMLSAX::EndDTD procedure method is called when the parser detects
the end of a Document Type Definition (DTD).

Syntax

Obj - > [IDLffXMLSAX::]JEndDTD
Arguments

None.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

158 Chapter 2: New IDL Objects and Methods

IDLFffXMLSAX::EndElement

The IDLffXMLSAX::EndElement procedure method is called when the parser
detects the end of an element.

Syntax
Obj - > [IDLffXMLSAX::]EndElement, URI, Local, gName
Arguments
URI

A named variable that will contain the namespace URI with which the element is
associated, if any.

Note
A URI (or Uniform Resource Identifier) refers to the generic set of al names and
addresses which are short strings which refer to abjects.

Local

A named variable that will contain the element name with any prefix removed, if the
element is associated with a namespace URI. If the element is not associated with a
namespace URI, this variable will contain an empty string.

gName

A named variable that will contain the element name found in the XML file.

Note
If the element is associated with a namespace URI, this variable may contain an
empty string.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 159

IDLffXMLSAX::EndEntity

The IDLffXMLSAX::EndEntity procedure method is called when the parser detects
the end of an internal or external entity expansion.

Syntax
Obj - > [IDLffXMLSAX::]EndEntity, Name
Arguments

Name

A named variable that will contain the name of the entity.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

160 Chapter 2: New IDL Objects and Methods

IDLFfXMLSAX::EndPrefixMapping

The IDLffXMLSAX::EndPrefixMapping procedure method is called when a
previously declared prefix mapping goes out of scope.

Syntax

Obj - > [IDLffXMLSAX::]EndPrefixMapping, Prefix
Arguments

Prefix

A named variable that will contain the namespace prefix that is going out of scope.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 161

IDLffXMLSAX::Error

The IDLffXMLSAX::Error procedure method is called when the parser detects an
error that is not expected to befatal. This method printsan IDL error string to the IDL
output log and allows the parser to continue processing.

For example, aviolation of XML validity constraintsis generaly a non-fatal error.

Note
This method will cause error messages to be printed to the IDL output log. If you
would like your application to hide error messages from the user (or display themin
some other fashion), override this method in your subclass of the IDLFffXMLSAX
object class. If you do override this method, the error message will not be printed to
the output log unless you explicitly call the superclass method.

Syntax

Obj - > [IDLffXMLSAX::]Error, SystemI D, LineNumber, ColumnNumber, Message
Arguments

SystemID

A named variable that will contain the URI of the associated text.
LineNumber

A named variable that will contain the line number that contains the error.

ColumnNumber

A named variable that will contain the column number that contains the error.

Message
A named variable that will contain the error message sent to the IDL output |og.

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

162 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX::ExternalEntityDecl

The IDLffXMLSAX::ExternalEntityDecl procedure method is called when the parser
detectsan <! ENTI TY ... > declarationsin the DTD for a parsed external entity.

Syntax
Obj - > [IDLffXMLSAX::]External EntityDecl, Name, PubliclD, SystemlD
Arguments

Name

A named variable that will contain the entity name.
PubliclD

A named variable that will contain the Public ID for the entity.

Note
If thisvalueis not specified in the entity declaration, this variable will contain an
empty string.

SystemID

A named variable that will contain the System ID for the entity, provided as an
absolute URI.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 163

IDLFffXMLSAX::FatalError

The IDLffXMLSAX::Fata Error procedure method is called when the parser detects
afatal error. When called, parsing will normally stop, but may sometimes continue
long enough to report further errors. This method prints an IDL error string to the
IDL output log.

Syntax

Obj - > [IDLffXMLSAX::]FatalError, Systeml D, LineNumber, ColumnNumber,
Message

Arguments

SystemID

A named variable that will contain the URI of the associated text.
LineNumber

A named variable that will contain the line number that contains the error.
ColumnNumber

A named variable that will contain the column number that contains the error.
Message

A named variable that will contain the error message sent to the IDL output |og.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

164 Chapter 2: New IDL Objects and Methods

IDLFffXMLSAX::GetProperty

The IDLffXMLSAX::GetProperty procedure method is used to get the values of
various properties of the parser.

Syntax

Obj - > [IDLffXMLSAX::]GetProperty [, FILENAME=variable]
[, PARSER_LOCATION=variable] [, PARSER_PUBLICID=variabl€]
[, PARSER_URI=variable]

Arguments
None.
Keywords

Any keyword to the IDLffXMLSAX::Init followed by Get can be retrieved using
IDLfEXMLSAX::GetProperty. To retrieve a property, set the associated keyword
equal to anamed variable that will contain the property value.

In addition, the following keywords are available:

Note
These properties are only available during a parse operation.

FILENAME

Set this keyword equal to a named variable that will contain the filename of the XML
file being parsed.

PARSER_LOCATION

Set this keyword equal to anamed variable that will contain the approximate location
of the parser within the entity being parsed. The value is returned as a two-element
array, with thefirst element set to the line number and the second element set the
column number.

PARSER_PUBLICID

Set this keyword equal to a named variable that will contain the Public ID for the
entity being parsed, if itisavailable. If the Public ID isnot available, an empty string
isreturned.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 165

PARSER_URI

Set this keyword equal to a named variable that will contain the base URI (System
ID) for the entity being parsed, if it isavailable. If the valueis available, it is always
an absolute URI. If the System ID is hot available, an empty string is returned.

Note
Use this value to identify the document or external entity in diagnostics, or to

resolve relative URIs.

What's New in IDL 5.6 IDLffXMLSAX object

166 Chapter 2: New IDL Objects and Methods

IDLFfXMLSAX::IgnorableWhitespace

The IDLffXMLSAX::IgnorableWhitespace procedure method is called when the
parser detects whitespace that separates elementsin an element content model.

Syntax
Obj - > [IDLffXMLSAX::]Ignorablewhitespace, Chars
Arguments

Chars

A named variable that will contain the whitespace detected by the parser. Whitespace
can consist of spaces, tabs, or newline characters in any combination.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 167

IDLfEXMLSAX::Init

The IDLffXMLSAX::Init function method initializes an XML parser object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. In most cases, you cannot call the Init method directly.
However, one exception to this rule does exist. If you write your own subclass of
this class, you can call the Init method from within the Init method of the subclass.

Syntax

Obj = OBJ NEW('IDLffXMLSAX' [, INAMESPACE_PREFIXES]
[, SCHEMA_CHECKING=[0,1,2] [, VALIDATION_MODE=[0,1,2]])

or

Result = Obj - > [IDLffXMLSAX::]Init() (Only in a subclass' Init method.)

Note

Keywords can be used in either form. They are omitted in the second form for
brevity.

Return Value

Returns the abject reference to this newly-created IDLfFXMLSAX object.

Arguments
None.

Keywords

Properties you can retrieve viathe IDLFEXMLSAX::GetProperty are indicated by the
word Get following the keyword. Properties you can set viathe
IDLfFXMLSAX::SetProperty are indicated by the word Set following the keyword.

NAMESPACE_PREFIXES (Get, Set)

Set this keyword to indicate that namespace prefixes are enabled. By default,
namespace prefixes are disabled.

What's New in IDL 5.6 IDLffXMLSAX object

168 Chapter 2: New IDL Objects and Methods

SCHEMA_CHECKING (Get, Set)

XML Schemas describe the structure and allowed contents of an XML document.
Schemas are more robust than, and are envisioned as a replacement for, DTDs. Set
this keyword to an integer value to indicate the type of validation the parser should
perform. By default, the parser will validate the parsed XML file against the specified
schema, if oneis provided; if no schemais provided, no validation will occur.
Possible values are:

Value Description
0 No validation.
1 Validate only if aschemais provided (the default).
2 Perform full schema constraint checking, if aschemais

provided. This feature checks the schema grammar itself for
additional errors. It does not affect the level of checking
performed on document instances that use schema grammars.

Table 2-1: SCHEMA_CHECKING Values

VALIDATION_MODE (Get, Set)

XML Document Type Definitions (DTDs) describe the structure and allowed contents
of an XML document. Set this keyword to indicate the type of XML validation that
the parser should perform. By default, the parser will validate the parsed XML file
against the specified DTD, if oneis provided; if no DTD is provided, no validation
will occur. Possible values are:

Value Description
0 No validation.
1 Validate only if aDTD is provided (the default).
2 Always perform validation. If thisoption isin force and no
DTD is provided, every XML element in the document will
generate an error.

Table 2-2: VALIDATION_MODE Values

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 169

IDLffXMLSAX::InternalEntityDecl

The IDLffXMLSAX::Internal EntityDecl procedure method is called when the parser
detectsan <! ENTI TY ... > declaration in aDTD for (parsed) internal entities. The
entity can be either a general entity or a parameter entity.

Syntax
Obj - > [IDLffXMLSAX::]Internal EntityDecl, Name, Value
Arguments

Name

A named variable that will contain the entity name. Names that start with the “ %
character are parameter entities; al others are general entities.

Value

A named variable that will contain the entity value. The entity value can contain
arbitrary XML content, which will be reparsed when the entity is expanded.

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

170 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX::NotationDecl

The IDLffXMLSAX::NotationDecl procedure method is called when the parser
detectsa <! NOTATI ON . . . > declaration inaDTD.

Syntax
Obj - > [IDLffXMLSAX::]NotationDecl, Name, PubliclD, SystemlD
Arguments

Name

A named variable that will contain the notation name.
PublicID

A named variable that will contain the Public ID for the notation.

Note
If thisvalue is not specified in the notation declaration, this variable will contain an
empty string.

SystemID

A named variable that will contain the System ID for the notation, provided as an
absolute URI.

Note
If thisvalue is not specified in the notation declaration, this variable will contain an
empty string.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 171

IDLffXMLSAX::ParseFile

The IDLffXMLSAX::ParseFile procedure method parses the specified XML file.
During the parsing operation, different object methods are called as different items
within the XML file are detected. When this method returns, the parse operation is
complete.

Syntax
Obj - > [IDLffXMLSAX::]ParseFile, Filename

Arguments

Filename

A string containing the full path name of the XML file to parse.

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

172 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX::Processinglinstruction

The IDLffXMLSAX::Processinglnstruction procedure method is called when the
parser detects a processing instruction.

Syntax
Obj - > [IDLffXMLSAX::]Processingl nstruction, Target, Data
Arguments
Target

A named variable that will contain a string specifying the target, which isthe
application that should process the instruction.

Data

A named variable that will contain a string specifying the data to be passed to the
application specified by Target.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 173

IDLffXMLSAX::SetProperty

The IDLffXMLSAX::SetProperty procedure method is used to set the values of
various properties of the parser.

Syntax

Obj - > [IDLffXMLSAX::|SetProperty [, NAMESPACE_PREFIXES]
[, SCHEMA_CHECKING=[0,1,2] [, VALIDATION_MODE=[0,1,2]]

Arguments
None.
Keywords

Any keyword to the IDLffXMLSAX::Init followed by Set can be set using
IDLfIXMLSAX::SetProperty.

What's New in IDL 5.6 IDLffXMLSAX object

174 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX::SkippedEntity
The IDLffXMLSAX::SkippedEntity procedure method is called when the parser
skips an entity and validation is not being performed. This method israrely called by
SAX parsers.

Syntax
Obj - > [IDLffXMLSAX::]SkippedEntity, Name

Arguments

Name

A named variable that will contain the name of the entity that was skipped.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 175

IDLffXMLSAX::StartCDATA

The IDLffXMLSAX::StartCDATA procedure method is called when the parser
detects the beginning of a<[CDATA[. . .]] > text section.

Syntax

Obj - > [IDLffXMLSAX::]StartCDATA
Arguments

None.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

176 Chapter 2: New IDL Objects and Methods

IDLFffXMLSAX::StartDocument

The IDLffXMLSAX::StartDocument procedure method is called when the parser
begins processing a document, and before any datais processed.

Syntax

Obj - > [IDLffXMLSAX::]StartDocument
Arguments

None.
Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 177

IDLffXMLSAX::StartDTD

The IDLffXMLSAX::StartDTD procedure method is called when the parser detects
the beginning of a Document Type Definition (DTD).

Syntax
Obj - > [IDLffXMLSAX::]StartDTD, Name, PubliclD, SystemD
Arguments

Name

A named variable that will contain the declared name of the root e ement for the
document.

PubliclD

A named variable that will contain the normalized version of the Public ID (aURI)
declared for the external subset, or an empty string if no external subset was declared.

Normalization involves removal of unnecessary “. ” and “. . " segments from the
URI.

SystemID

A named variable that will contain the System ID (aURI) of the external subset, or an
empty string if no external subset was declared.

Note
This URI has not been resolved into an absolute URI.

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

178 Chapter 2: New IDL Objects and Methods

IDLFffXMLSAX::StartElement

The IDLffXMLSAX::StartElement procedure method is called when the parser
detects the beginning of an element.

Syntax

Obj - > [IDLffXMLSAX::]StartElement, URI, Local, gName [, attName, attValue]
Arguments
URI

A named variable that will contain the namespace URI with which the element is
associated, if any.

Local

A named variable that will contain the element name with any prefix removed, if the
element is associated with a namespace URI. If the element is not associated with a
namespace URI, this variable will contain an empty string.

gName

A named variable that will contain the element name found in the XML file.

Note
If the element is associated with a namespace URI, this variable may contain an
empty string.

attrName

A named variable that will contain a string array, which is the names of the attributes
associated with the element, if any.

attrvalue

A named variable that will contain astring array, which isthe values of each attribute
associated with the element, if any. The returned array will have the same number of
elements as the array returned in the attrName keyword variable.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 179

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

180 Chapter 2: New IDL Objects and Methods

IDLffXMLSAX::StartEntity

The IDLffXMLSAX::StartEntity procedure method is called when the parser detects
the start of an internal or external entity expansion.

Syntax

Obj - > [IDLffXMLSAX::]StartEntity, Name
Arguments

Name

A named variable that will contain the name of the entity.

Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 181

IDLFfXMLSAX::StartPrefixMapping

The IDLfEXMLSAX::StartPrefixM apping procedure method is called when the
parser detects the beginning of a namespace declaration.

Syntax
Obj - > [IDLffXMLSAX::]StartPrefixmapping, Prefix, URI
Arguments

Prefix

A named variable that will contain the prefix, which is being mapped. If the variable
specified by Prefix contains an empty string, the mapping is for the default element
namespace.

URI

A named variable that will contain the URI of the prefix namespace.
Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

182 Chapter 2: New IDL Objects and Methods

IDLFfXMLSAX::StopParsing
Call the IDLffXMLSAX::StopParsing procedure method during a parse operation to

halt the operation and cause the ParseFile method to return. This may be useful when
parsing large XML files and the desired information is known to have been returned.

Syntax

Obj - > [IDLffXMLSAX::]StopParsing
Arguments

None.
Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 183

IDLFfXMLSAX::UnparsedEntityDecl

The IDLffXMLSAX::UnparsedEntityDecl procedure method is called when the
parser detectsan <! ENTI TY . . . > declaration that includes the NDATA keyword,
indicating that the entity is not meant to be parsed. The value of the NDATA keyword
generally specifies the name of a notation, which in turn specifies the type of data.

Syntax

Obj - > [IDLffXMLSAX::]UnparsedEntityDecl, Name, PubliclD, SystemID,
Notation

Arguments

Name
A named variable that will contain the name of the unparsed entity.
PubliclD

A named variable that will contain the Public ID of the notation specified by the
entity’s NDATA keyword, or an empty string if no Public ID was declared.

SystemID

A named variable that will contain the System ID of the notation specified by the
entity’'s NDATA keyword. Thisvalue is normally an absolute URI.

Notation

A named variable containing the name of the notation specified by the entity’s
NDATA keyword.

Keywords

None.

What's New in IDL 5.6 IDLffXMLSAX object

184 Chapter 2: New IDL Objects and Methods

IDLFfXMLSAX::Warning

The IDLffXMLSAX::Warning procedure method is called when the parser detects a
problem during processing. This method printsan IDL error string to the IDL output
log and allows the parser to continue processing.

Note
This method will cause error messages to be printed to the IDL output log. If you
would like your application to hide error messages from the user (or display themin
some other fashion), override this method in your subclass of the IDLFffXMLSAX
object class. If you do override this method, the error message will not be printed to
the output log unless you explicitly call the superclass method.

Syntax

Obj - > [IDLffXMLSAX::]Warning, Systeml D, LineNumber, ColumnNumber,
Message

Arguments

SystemID

A named variable that will contain the URI of the text that generated the error.
LineNumber

A named variable that contains the line number that contains the error.

ColumnNumber

A named variable that contains the column number that contains the error.

Message

A named variable that contains the error message.
Keywords

None.

IDLffXMLSAX object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods

IDLgrContour object

The following methods have been added in IDL 5.6:

* |DLgrContour::AdjustL abel Offsets
* |IDLgrContour::GetLabelInfo

What's New in IDL 5.6

185

IDLgrContour object

186 Chapter 2: New IDL Objects and Methods

IDLgrContour::AdjustLabelOffsets

The IDLgrContour::AdjustL abel Offsets procedure method adjusts the offsets at
which contour labels are positioned.

Syntax

Obj->[IDLgrContour::]AdjustL abel Offsets, Levellndex, Label Offsets

Arguments
Levellndex

The index of the contour level for which the label offsets are being adjusted. This

value must be greater than or equal to zero and less than the number of levels (refer to
the N_LEVEL S keyword in the IDLgrContour::Init method).

LabelOffsets
A scalar or vector of floating point offsets, [t0, t1, ...], that indicate the parametric
offsets along the length of each contour line at which each label isto be positioned.
The number of elementsin this vector must exactly match the number of elements

returned in the LABEL_OFFSETS vector retrieved viathe
IDLgrContour::GetL abelInfo method for the same level.

Keywords

None.

IDLgrContour object What's New in IDL 5.6

Chapter 2: New IDL Objects and Methods 187

IDLgrContour::GetLabellnfo

The IDLgrContour::GetL abel Info procedure method retrieves information about the
labels for a contour. The returned information is only valid until the next time the
C_LABEL_INTERVAL or C_LABEL_OBJECTS property is modified using the
IDLgrContour::SetProperty method, or the offsets are adjusted using the
IDLgrContour::AdjustL abel Off sets method.

Syntax

Obj->[IDLgrContour::]GetL abelInfo, Destination, LevelIndex
[, LABEL_OFFSETS=variable] [, LABEL_POLY S=variabl€]
[, LABEL_OBJECTS=variable]

Arguments

Destination

A reference to adestination object (such asan IDLgrWindow or IDLgrBuffer object).
The contour label information will be computed so that the requested font sizeis
satisfied for this destination device.

Levellndex

The index of the contour level for which the label information is being requested.
Thisvalue must be greater than or equal to zero and less than the number of levels
(refer to the N_LEVELS keyword in the IDLgrContour::Init method).

Keywords
LABEL_OFFSETS
Set this keyword to anamed variable that upon return will contain a vector of floating

point offsets, [tO, t1, ...], that indicate the parametric offsets along the length of each
contour line at which the contour labels are positioned.

What's New in IDL 5.6 IDLgrContour object

188 Chapter 2: New IDL Objects and Methods

LABEL_POLYLINES

Set this keyword to a named variabl e that upon return will contain a vector of contour
polyline indices, [Py, Py, ...], that indicate which contour lines are |abeled. P;
corresponds to the ith contour line. Note that if a given contour line has more than
onelabel along its perimeter, then the corresponding polyline index may appear more
than oncein the LABEL_POLYLINES vector.

LABEL_OBJECTS

Set thiskeyword to anamed variable that upon return will contain avector of objects
that represent the labels for each contour label.

IDLgrContour object What's New in IDL 5.6

Chapter 3:
New IDL Routines

This chapter describes routinesintroduced in IDL version 5.6

What's New in IDL 5.6 189

190 Chapter 3: New IDL Routines
COPY_LUN

The COPY_LUN procedure copies data between two open files. It alows you to
transfer aknown amount of data from one file to another without needing to have the
data availablein an IDL variable. COPY _LUN can copy a fixed amount of data,
specified in bytes or lines of text, or it can copy from the current position of the file
pointer in the input file to the end of that file.

COPY _LUN copies data between open files. To copy entire files based on their
names, see the FILE_COPY procedure. To read and discard a known amount of data
from afile, seethe SKIP_LUN.

Syntax

COPY _LUN, FromUnit, ToUnit [, Num] [, /EOF] [, /LINES]
[, TRANSFER_COUNT]

Arguments

FromUnit

An integer that specifies the file unit for the file from which datais to be taken (the
sourcefile). Datais copied from FromUnit, starting at the current position of the file
pointer. The file pointer is advanced as datais read. The file specified by FromUnit
must be open, and must not have been opened with the RAWIO keyword to OPEN.

ToUnit

An integer that specifies the file unit for the file to which data isto be written (the
destination file). Data is written to ToUnit, starting at the current position of the file
pointer. The file pointer is advanced as data is written. The file specified by ToUnit
must be open for output (OPENW or OPENU), and must not have been opened with
the RAWIO keyword to OPEN.

Num

The amount of datato transfer between the two files. Thisvalueis specified in bytes,
unlessthe LINES keyword is specified, in which caseit is taken to be the number of
text lines. If Num s not specified, COPY _LUN acts asif the EOF keyword has been
set, and copies all datain FromUnit (the source file) from the current position of the
file pointer to the end of the file.

COPY_LUN What's New in IDL 5.6

Chapter 3: New IDL Routines 191

If Numis specified and the source file comes to end of file before the specified
amount of dataistransferred, COPY_LUN issues an end-of-file error. The EOF
keyword aters this behavior.

Keywords
EOF

Set this keyword to ignore the value given by Num (if present) and instead transfer all
data between the current position of thefile pointer in FromUnit and the end of the
file.

Note
If EOF is set, no end-of-file error isissued even if the amount of data transferred
does not match the amount specified by Num. The TRANSFER_COUNT keyword
can be used with EOF to determine how much data was transferred.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be transferred. By default, the Num argument specifies the number of bytes of
data to transfer.

TRANSFER_COUNT

Set this keyword equal to a named variable that will contain the amount of data
transferred. If LINESis specified, thisvalueis the number of lines of text. Otherwise,
it isthe number of bytes. TRANSFER_COUNT is primarily useful when the Num
argument is not specified or the EOF keyword is present. If Num is specified and the
EOF keyword is not present, TRANSFER_COUNT will be the same as the value
specified for Num.

Examples

Copy the next 100000 bytes of data between two files:
COPY_LUN, FronmUnit, ToUnit, 100000

Copy the next 8 lines of text between two files:
COPY_LUN, FronmUnit, ToUnit, 8, /LINES

What's New in IDL 5.6 COPY_LUN

192 Chapter 3: New IDL Routines

Copy the remainder of the datain one file to another, and use the
TRANSFER_COUNT keyword to determine how much data was copied:

COPY_LUN, FronUnit, ToUnit, /EOF, TRANSFER_COUNT=n

Copy the remaining lines of text from one file to another, and use the
TRANSFER_COUNT keyword to determine how many lines were transferred.

COPY_LUN, FronmUnit, ToUnit, /EOF, /LINES, TRANSFER COUNT=n
Version History
Introduced: 5.6

See Also

CLOSE, EOF, FILE_COPY, FILE_LINK, FILE_MOVE, OPEN, READ/READF,
SKIP_LUN, WRITEU

COPY_LUN What's New in IDL 5.6

Chapter 3: New IDL Routines 193

DIAG_MATRIX

The DIAG_MATRIX function constructs adiagonal matrix from an input vector, or if
given amatrix, then DIAG_MATRIX will extract a diagonal vector.

Syntax

Result = DIAG_MATRIX(A[, Diag])

Return Value

» If given aninput vector with n values, the result is an n-by-n array of the same
type. The DIAG_MATRIX function may also be used to construct subdiagonal
or superdiagonal arrays.

» If given aninput n-by-m array, the result is avector with MIN(n,m) elements
containing the diagonal elements. The DIAG_MATRIX function may also be
used to extract subdiagonals or superdiagonals.

Arguments
A

Either an n-element input vector to convert to a diagonal matrix, or a n-by-minput
array to extract adiagonal. A may be any numeric type.

Diag
An optional argument that specifies the subdiagonal (Diag < 0) or superdiagonal
(Diag > 0) to fill or extract. The default is Diag=0 which puts or extracts the values
along the diagonal. If A is avector with the m elements, then the result is an n-by-n
array, wheren =m+ ABS(Diag). If Aisan array, then the result is a vector whose

length depends upon the number of elements remaining along the subdiagonal or
superdiagonal.

What's New in IDL 5.6 DIAG_MATRIX

194 Chapter 3: New IDL Routines

Tip
The Diag argument may be used to easily construct tridiagonal arrays. For example,
the expression,

DI AG_MATRI X(VL, -1) + DI AG_MATRI X(V) + DI AG_MATRI X(VU, 1)
will create an n-by-n array, where VL isan (n - 1)-element vector containing the

subdiagonal vaues, V isan n-element vector containing the diagonal values, and
VU isan (n - 1)-element vector containing the superdiagonal values.

Keywords
None.
Example

Create a tridiagonal matrix and extract the diagonal using the following program:

PRO ExDi agMatri x

; Convert three input vectors to a tridiagonal matrix:
diag = [1, -2, 3, -4]

sub =[5, 10, 15]

super = [3, 6, 9]

array = DI AG MATR X(diag) + $

DI AG_ MATRI X(super, 1) + DI AG MATRI X(sub, -1)

PRI NT, 'DI AG MATRI X array:"'

PRI NT, array

; Extract the diagonal :

PRI NT, ' DI AG_ MATRI X di agonal : '
PRI NT, DI AG MATRI X(arr ay)

END

When this program is compiled and run, IDL prints:
DI AG_MATRI X array:

1 3 0 0
5 -2 6 0
0 10 3 9
0 0 15 -4
DI AG_MATRI X di agonal :

1 -2 3 -4

DIAG_MATRIX What's New in IDL 5.6

Chapter 3: New IDL Routines 195

Version History
Introduced: 5.6
See Also

IDENTITY, MATRIX_MULTIPLY, MATRIX_POWER, “Multiplying Arrays” in
Chapter 22 of the Using IDL manual.

What's New in IDL 5.6 DIAG_MATRIX

196

FILE_COPY

Chapter 3: New IDL Routines

TheFILE_COPY procedure copiesfiles, or directories of files, to anew location. The
copies retain the permission settings of the origina files, and belong to the user that

performed the copy. See “Rules Used By FILE_COPY” on page 198 for additional
information.

FILE_COPY copiesfiles based on their names. To copy data between open files, see
the COPY _LUN procedure.

Syntax

FILE_COPY, SourcePath, DestPath [, /ALLOW_SAME] [, /NOEXPAND_PATH]
[, /OVERWRITE] [, /RECURSIVE] [, /REQUIRE_DIRECTORY] [, /VERBOSE]

UNIX-Only Keywords: [, /COPY_NAMED_PIPE] [, /COPY_SYMLINK]
[, /FORCE]

Arguments
SourcePath

A scalar string or string array containing the names of the files or directories to be

copied.

Note
If SourcePath contains a directory, the RECURSIVE keyword must be set.

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories specified by SourcePath are to be copied. If more than onefileis
to be copied to agiven destination, that destination must exist and be a directory.

Keywords
ALLOW_SAME

Attempting to copy afile on top of itself by specifying the same file for SourcePath
and DestPath isusually considered to be an error. If the ALLOW_SAME keyword is
set, no copying is done and the operation is considered successful.

FILE_COPY What's New in IDL 5.6

Chapter 3: New IDL Routines 197

COPY_NAMED_PIPE (UNIX Only)

When FILE_COPY encounters a UNIX named pipe (also caled afifo) in
SourcePath, it usually opensit as aregular file and attempts to copy datafrom it to
the destination file. If COPY_NAMED_PIPE is set, FILE_COPY will instead
replicate the pipe, creating a new named pipe at the destination using the system
mkfifo() function.

COPY_SYMLINK (UNIX Only)

When FILE_COPY encounters a UNIX symbolic link in SourcePath, it attemptsto
copy thefile or directory pointed to by thelink. If COPY_SYMLINK isset,
FILE_COPY will instead create a symbolic link at the destination with the same
name as the source symbolic link, and pointing to the same path as the source.

FORCE (UNIX Only)

Even if the OVERWRITE keyword is set, FILE_COPY does not overwrite files that
have their file permissions set to prevent it. If the FORCE keyword is set, such files
are quietly removed to make way for the overwrite operation to succeed.

Note
FORCE does not imply OVERWRITE; both must be specified to overwrite a
protected file.

NOEXPAND_PATH

Set this keyword to cause FILE_COPY to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

OVERWRITE
Set this keyword to allow FILE_COPY to overwrite an existing file.
RECURSIVE

Set this keyword to cause directories specified by SourcePath to be copied to
DestPath recursively, preserving the hierarchy and names of the files from the source.
If SourcePath includes one or more directories, the RECURSIVE keyword must be
set.

What's New in IDL 5.6 FILE_COPY

198

Note

Chapter 3: New IDL Routines

On aUNIX system, when performing arecursive copy on adirectory hierarchy that
includesfiles that are links to other files, the destination files will be copies, not
links. Setting the COPY _SYMLINK keyword will cause files that are symbolic
links to be copied as symbolic links, but FILE_COPY does not include a similar
facility for copying hard links. See the description of the FILE_LINK for more
information on UNIX filelinks.

REQUIRE_DIRECTORY

Set this keyword to cause FILE_COPY to require that DestPath exist and be a
directory.

VERBOSE

FILE_COPY

Set thiskeyword to cause FILE_COPY to issue an informative message for every file
copy operation it carries out.

Rules Used By FILE_COPY

The following rules govern how FILE_COPY operates:

The argumentsto FILE_COPY can be scalar or array. If both arguments are
arrays, the arrays must contain the same number of elements; in this case, the
files are copied pairwise, with each file from SourcePath being copied to the
corresponding file in the DestPath. If SourcePath isan array and DestPathisa
scalar, al filesin SourcePath are copied to the single location given by
DestPath, which must exist and be a directory.

Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for a
given element of SourcePath are copied to the location specified by the
corresponding element of DestPath. If multiple files are copied to asingle
element of DestPath, that element must exist and be a directory.

If afile specified in DestPath does not exist, the corresponding file from
SourcePath is copied using the name specified by DestPath. Any parent
directories to the file specified by DestPath must already exist.

If DestPath names an existing regular file, FILE_COPY will not overwriteit,
unless the OVERWRITE keyword is specified.

What's New in IDL 5.6

Chapter 3: New IDL Routines 199

» If DestPath names an existing directory and SourcePath names a regular (non-
directory) file, then FILE_COPY creates a file with the same name as the file
given by SourcePath within the DestPath directory.

» If DestPath specifies an existing directory and SourcePath also names a
directory, and the RECURSIVE keyword is set, FILE_COPY checks for the
existence of asubdirectory of DestPath with the same name as the source
directory. If this subdirectory does not exigt, it is created using the same
permissions as the directory being copied. Then, all the files and directories
underneath the source directory are copied to this subdirectory. FILE_COPY
will refuseto overwrite existing files within the destination subdirectory unless
the OVERWRITE keyword isin effect.

Examples

Make a backup copy of afile named nyr out i ne. pr o in the current working
directory:

FI LE_COPY, 'nyroutine.pro', 'nyroutine.pro.backup'

Create a subdirectory named BACKUP in the current working directory and copy all
. pro files, makefi | e, and mydat a. dat into it:

FI LE_MKDI R, ' BACKUP
FILE_COPY, ['*.pro', 'makefile', 'mydata.dat'], 'BACKUF

Version History
Introduced: 5.6
See Also

COPY_LUN, FILE_LINK, FILE_MOVE

What's New in IDL 5.6 FILE_COPY

200

Chapter 3: New IDL Routines

FILE_LINES

FILE_LINES

The FILE_LINES function reports the number of lines of text contained within the
specified file or files.

Text files containing data are very common. To read such afile usually requires
knowing how many lines of text it contains. Under UNIX and Windows, there isno
special text file type, and it is not possible to tell how many lines are contained in a
file from basic file attributes. Rather, lines are encoded using a special character or
characters at the end of each line:

* UNIX operating systems use an ASCII linefeed (LF) character at the end of
each line.

» Older Macintosh systems (prior to the UNIX-based Mac OS X) use a carriage
return (CR).

* Microsoft Windows uses atwo character CR/LF sequence.

The only way to determine the number of lines of text contained within afileisto
open it and count lines while reading and skipping over them until the end of the file
is encountered. Since files are often copied from one type of system to another
without going through the proper line termination conversion, portable software
needs to be able to recognize any of these terminations, regardless of the system
being used. FILE_LINES performsthis operation in an efficient and portabl e manner,
handling all three of the line termination conventions listed above.

This routine works by opening the file and reading the data contained within. It is
therefore only suitable for regular disk files, and only when access to that file is fast
enough to justify reading it more than once. For other types of files, other approaches
are necessary, such as:

* Reading the file once, using an adaptive (expandable) data structure, counting
the number of lines as they are input, and growing the data structure as
necessary.

» Building aheader into your file format that includes the necessary information,
or somehow embedding the number of linesinto the file data.

* Maintaining file information in a separate file associated with each file.
* Using a self describing data format that avoids these issues.

This routine assumes that the specified file or files contain only lines of text. Itis
unable to correctly count linesin files that contain binary data, or which do not use
the standard line termination characters. Results are undefined for such files.

What's New in IDL 5.6

Chapter 3: New IDL Routines 201

Notethat FILE_LINES s equivalent to the following IDL code:
FUNCTION file_lines, filenane
OPENR, unit, filename, /GET_LUN

str ="
count = Ol
VWHI LE NOT EOF(unit) DO BEG N

READF, unit, str
count = count + 1

ENDWHI LE

FREE_LUN, unit

RETURN, count
END

The primary advantage of FILE_LINES over the IDL version shown hereis
efficiency. FILE_LINES is able to avoid the overhead of the WHILE loop aswell as

not having to create an IDL string for each line of thefile.

Syntax
Result = FILE_LINES(Path [, INOEXPAND_PATH])

Return Value

Returns the number of lines of text contained within the specified file or files. If an
array of file namesis specified viathe Path parameter, the return value is an array
with the same number of elements as Path, with each element containing the number

of linesin the corresponding file.
Arguments

Path
A scalar string or string array containing the names of the text files for which the
number of linesis desired.

Keywords

NOEXPAND_PATH

If specified, FILE_LINES uses Path exactly as specified, without expanding any
wildcard characters or environment variable names included in the path. See

FILE_SEARCH for details on path expansion.

What's New in IDL 5.6 FILE_LINES

202 Chapter 3: New IDL Routines

Examples

Read the contents of the text file mydat a. dat into astring array.

nlines = FILE LI NES(' nydata. dat"')
sarr = STRARR(nl i nes)

OPENR, unit, 'nydata.dat',/GET_LUN
READF, unit, sarr

FREE_LUN, unit

Version History
Introduced: 5.6
See Also

READ/READF

FILE_LINES What's New in IDL 5.6

Chapter 3: New IDL Routines 203

FILE_LINK

The FILE_LINK procedure creates UNIX file links, both regular (hard) and
symbolic. FILE_LINK isavailable only under UNIX.

A hard link isadirectory entry that referencesafile. UNIX allows multiple such links
to exist simultaneously, meaning that a given file can be referenced by multiple
names. All such links are fully eguivalent references to the same file (there are no
concepts of primary and secondary names). All files carry a reference count that
contains the number of hard links that point to them; deleting alink to afile does not
remove the actua file from the filesystem until the last hard link to thefileis
removed. The following limitations on hard links are enforced by the operating
system:

» Hard links may not span filesystems, as hard linking is only possible within a
single filesystem.

» Hard links may not be created between directories, as doing so has the
potential to create infinite circular loops within the hierarchical UNIX
filesystem. Such loops will confuse many system utilities, and can even cause
filesystem damage.

A symboliclink isanindirect pointer to afile; itsdirectory entry contains the name of
the file to which it islinked. Symbolic links may span filesystems and may refer to
directories.

Many users find symbolic links easier to understand and use. Due to their generality
and lack of restriction, RSl recommends their use over hard links for most purposes.
FILE_LINK creates symbolic links by default.

See “Rules Used by FILE_LINK” on page 204 for information on how FILE_LINK
interprets its arguments.

Syntax

FILE_LINK, SourcePath, DestPath [, /ALLOW_SAME] [, /HARDLINK]
[,/NOEXPAND_PATH] [, /VERBOSE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
linked.

What's New in IDL 5.6 FILE_LINK

204 Chapter 3: New IDL Routines

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories given by SourcePath are to be linked. If more than one fileisto
be linked to a given destination, that destination must exist and be a directory.

Keywords

ALLOW_SAME

Attempting to link afile to itself by specifying the same file for SourcePath and
DestPath is usually considered to be an error. If the ALLOW_SAME keyword is set,
no link is created and the operation is considered to be successful.

HARDLINK

Set this keyword to create hard links. By default, FILE_LINK creates symbolic links.
NOEXPAND_PATH

Set this keyword to cause FILE_LINK to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

VERBOSE

Set this keyword to cause FILE_LINK to issue an informative message for every file
link operation it carries out.

Rules Used by FILE_LINK

The following rules govern how FILE_LINK operates:

» Theargumentsto FILE_LINK can be scalar or array. If both arguments are
arrays, they must contain the same number of elements, and thefiles are
paired, with each file from SourcePath being linked to the corresponding file
in the DestPath. If SourcePath isan array and DestPath isascalar, al links are
created in the single location given by DestPath, which must exist and be a
directory.

» Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for a
given element of SourcePath are linked to the corresponding element of

FILE_LINK What's New in IDL 5.6

Chapter 3: New IDL Routines 205

DestPath. If multiple files are linked to a single element of DestPath, that
element must exist and be a directory.

» If afile specified in DestPath does not exist, the corresponding file from
SourcePath is linked using the name specified by DestPath. Any parent
directories to the filename specified by DestPath must aready exist.

» |f DestPath names an existing regular file, FILE_LINK will not overwrite it.

* If DestPath names an existing directory, alink with the same name as the
source fileis created in the directory. Thisis primarily of interest with hard
links.

Examples

Create asymbolic link named cur r ent . dat in the current working directory,
pointing to thefile/ mast er / dat a/ sat urn7. dat :

FILE_LINK, '/master/data/saturn7.dat', 'current.dat’
Version History
Introduced: 5.6

See Also

COPY_LUN, FILE_COPY, FILE_MOVE, FILE_READLINK

What's New in IDL 5.6 FILE_LINK

206 Chapter 3: New IDL Routines

FILE_MOVE

The FILE_MOVE procedure renames files and directories, effectively moving them
to anew location. The moved files retain their permission and ownership attributes.
Within agiven filesystem or volume, FILE_MOVE does not copy file data. Rather, it
simply changes the file names by updating the directory structure of the filesystem.
This operation isfast and safe, but is only possible within a single filesystem.
Attempts to move aregular file from one filesystem to another are carried out by
copying thefileusing FILE_COPY, and then deleting the origina file. It isan error to
attempt to use FILE_MOVE to move adirectory from one filesystem to another.

See “Rules Used by FILE_MOVE”" on page 207 for information on how
FILE_MOVE interpretsits arguments.

Syntax

FILE_MOVE, SourcePath, DestPath [, /ALLOW_SAME] [, /NOEXPAND_PATH]
[, /OVERWRITE] [, /REQUIRE_DIRECTORY] [, /VERBOSE]

Arguments

SourcePath

A scalar string or string array containing the names of the files or directories to be
moved.

DestPath

A scalar string or string array containing the names of the destinations to which the
files and directories specified by SourcePath are to be moved. If more than onefileis
to be moved to a given destination, that destination must exist and be a directory.

Keywords
ALLOW_SAME

Attempting to move afile on top of itself by specifying the same file for SourcePath
and DestPath isusually considered to be an error. If the ALLOW_SAME keyword is
set, no renaming is done and the operation is considered to be successful.

FILE_MOVE What's New in IDL 5.6

Chapter 3: New IDL Routines 207

NOEXPAND_PATH

Set this keyword to cause FILE_MOVE to use SourcePath and DestPath exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion.

OVERWRITE
Set this keyword to allow FILE_MOVE to overwrite an existing file.
REQUIRE_DIRECTORY

Set this keyword to cause FILE_MOVE to require that DestPath exist and be a
directory.

VERBOSE

Set this keyword to cause FILE_MOVE to issue an informative message for every
file move operation it carries out.

Rules Used by FILE_ MOVE

The following rules govern how FILE_MOVE operates:

* Theargumentsto FILE_MOVE can be scalar or array. If both arguments are
arrays, they must contain the same number of elements, and thefiles are
moved in pairs, with each file from SourcePath being renamed to the
corresponding file in the DestPath. If SourcePath isan array and DestPathisa
scalar, al filesin SourcePath are renamed to the single location given by
DestPath, which must exist and be a directory.

» Elements of SourcePath may use wildcard characters (as accepted by the
FILE_SEARCH function) to specify multiple files. All the files matched for
that element of SourcePath are renamed to the location specified by the
corresponding element of DestPath. If multiple files are renamed to asingle
element of DestPath, that element must exist and be a directory.

» If afile specified in DestPath does not exist, the corresponding file from
SourcePath is moved using the name specified by DestPath. Any parent
directories to the filename specified by DestPath must aready exist.

» |f DestPath names an existing regular file, FILE_MOVE will not overwrite it,
unless the OVERWRITE keyword is specified.

» |If DestPath names an existing directory and SourcePath names a regular (non-
directory) file, the source file is moved into the specified directory.

What's New in IDL 5.6 FILE_MOVE

208 Chapter 3: New IDL Routines

» If DestPath specifies an existing directory and SourcePath also names a
directory, FILE_MOVE checksfor the existence of a subdirectory of DestPath
with the same name as the source directory. If this subdirectory does not exist,
the source directory ismoved to the specified location. If the subdirectory does
exist, an error is issued, and the rename operation is not carried out.

Examples

Renamethefilebackup. dat topri mary. dat inthe current working directory:
FI LE_MOVE, 'backup.dat', 'prinary.dat’

Create a subdirectory named BACKUP in the current working directory and move al
. pro files, makefi | e, and mydat a. dat into it:

FI LE_MKDI R, ' BACKUP
FILE_MOVE, ['*.pro', 'makefile', 'mydata.dat'], 'BACKUF
Version History
Introduced: 5.6

See Also

COPY_LUN, FILE_COPY, FILE_LINK

FILE_MOVE What's New in IDL 5.6

Chapter 3: New IDL Routines 209

FILE_READLINK

The FILE_READLINK function returns the path pointed to by UNIX symbolic links.
Syntax

Result = FILE_READLINK (Path [, /ALLOW_NONEXISTENT]
[, /ALLOW_NONSYMLINK] [, /NOEXPAND_PATH])

Return Value
Returns the path associated with a symbolic link.
Arguments

Path

A scalar string or string array containing the names of the symbolic links to be
translated.

Keywords
ALLOW_NONEXISTENT

Set this keyword to return aNULL string rather than throwing an error if Path
contains a non-existent file.

ALLOW_NONSYMLINK

Set this keyword to return a NULL string rather than throwing an error if Path
contains a path to afile that is not a symbolic link.

NOEXPAND_PATH

Set this keyword to cause FILE_READLINK to use Path exactly as specified,
without expanding any wildcard characters or environment variable names included
in the path. See FILE_SEARCH for details on path expansion.

What's New in IDL 5.6 FILE_READLINK

210 Chapter 3: New IDL Routines

Examples

Under Mac OS X, the/ et c directory isactualy asymbolic link. The following
statement reads it and returns the location to which the link points:

path = FI LE_READLI NK(' /etc")

It is possible to have chains of symbolic links, each pointing to another. The
following function uses FILE_READLINK to iteratively translate such links until it
finds the actua file:

FUNCTI ON RESOLVE_SYMLI NK, path

savepath = path ; Renenber | ast successful translation
WHI LE (path NE '') DO BEG N
path = FI LE_READLI NK(path, /ALLOW NONEXI STENT, $
/ ALLOW NONSYM_I NK)
|F (path NE '') THEN BEG N
; If returned path is not absolute, use it to replace the
; last path segment of the previous path.
| F (STRM D(path, 0, 1) NE '/') THEN BEG N
| ast = STRPOS(savepath, '/', /REVERSE_SEARCH)
IF (last NE -1) THEN path = STRM D(savepath, 0, last) $
+ '/' + path
ENDI F
savepath = path
ENDI F
ENDWHI LE

; FI LE_EXPAND_PATH r enoves redundant things like /./ from
; the result.
RETURN, FI LE_EXPAND PATH(savepat h)

END
Version History
Introduced: 5.6
See Also

FILE_LINK

FILE_READLINK What's New in IDL 5.6

Chapter 3: New IDL Routines 211

FILE_SAME

Itiscommon for agiven file to be access ble via more than one name. For example, a
relative path and a fully-qualified path to the same file are considered different
names, since the strings that make up the paths are not lexically identical. In addition,
under UNIX, the widespread use of links (hard and symbolic) makes multiple names
for the same file very common.

The FILE_SAME function isused to determine if two different file namesrefer to the
same underlying file.

The mechanism used to determine whether two names refer to the same file depends
on the operating system in use:

UNIX: Under UNIX, al files are uniquely identified by two integer values: the
filesystem that contains the file and the inode number, which identifies the file within
the filesystem. If the input arguments are lexically identical, FILE_SAME will return
True, regardless of whether the file specified actually exists. Otherwise, FILE_SAME
compares the device and inode numbers of the two files, and returns Trueif they are
identical, or False otherwise.

Windows: Unlike UNIX, Microsoft Windows identifies files solely by their names.
FILE_SAME therefore expands the two supplied pathsto their fully qualified forms,
and then performs a simple case insensitive string comparison to determine if the
paths areidentical. Thisisreliable for local disk files, but can produce incorrect
results under some circumstances:

* UNC network paths can expand to different, but equivalent, paths. For
example, a network server may be referred to by either aname or an IP
address.

* Network attached storage can have mechanisms for giving multiple names to
the same file, but to the Windows client system the names will appear to refer
to different files. For example, a UNIX server using Samba software to serve
files to machines on a Windows network can use symbolic links to produce
two names for the same file, but these will appear as two distinct filesto a
Windows machine.

For these reasons, FILE_SAME is primarily of interest on UNIX systems. Under
Windows, RSI recommendsits use only on local files.

Syntax

Result = FILE_SAME(Pathl, Path2 [, INOEXPAND_PATH])

What's New in IDL 5.6 FILE_SAME

212 Chapter 3: New IDL Routines

Return Value

FILE_SAME returns True (1) if two filenames refer to the same underlying file, or
False (0) otherwise. If either or both of the input arguments are arrays of file names,
the result is an array, following the same rules as standard IDL operators.

Arguments

Path1, Path2

Scalar or array string values containing the two file paths to be compared.
Keywords

NOEXPAND_PATH

Set this keyword to cause FILE_SAME to use the Path arguments exactly as
specified, without expanding any wildcard characters or environment variable names
included in the paths. See FILE_SEARCH for details on path expansion. The utility
of doing this depends on the operating system in use:

UNIX: Under UNIX, path expansion is not necessary unless the Path arguments use
shell meta characters or environment variables.

Windows: By default, FILE_SAME expands the supplied pathsto their fully
qualified formsin order to be able to compare them. Preventing this path expansion
cripples its ability to make a useful comparison, and is not recommended.

Examples

UNIX command shells often provide the HOME environment variable to point at the
user’s home directory. Many shells also expand the' ~' character to point at the
home directory. The following IDL statement determines if these two mechanisms
refer to the same directory:

PRI NT, FILE_SAME(' ~', '$HOVE)

On aUNIX system, the following statement determinesif the current working
directory isthe same as your home directory:

PRI NT, FILE_SAME('.', '$HOWE)

FILE_SAME What's New in IDL 5.6

Chapter 3: New IDL Routines 213

On some BSD-derived UNIX systems, the three commands / bi n/ cp,/ bi n/ | n,
and / bi n/ mv are actually three hard links to the same binary file. The following
statement will print the number 1 if thisistrue on your system:

PRI NT, TOTAL(FILE_SAME(' /bin/cp', ['/bin/In", '/bin/m'])) EQ 2

Under Mac OS X, the/ et c directory isactually asymboliclink to/ pri vate/ etc.
As aresult, the following lines of code provide a simple test to determine whether
Mac OS X isthe current platform:

IF FILE_SAVE(' /etc', '/private/etc') THEN $

PRI NT, 'Running Mac OS X' ELSE $
PRI NT, 'Not Running Mac OGS X

Note
The above lines are shown simply as an example; checking the value of
IVERSION.OS _FAMILY isamore reliable method of determining which
operating system isin use.

Version History
Introduced: 5.6

See Also

FILE_EXPAND_PATH, FILE_INFO, FILE_SEARCH, FILE_TEST

What's New in IDL 5.6 FILE_SAME

214

Chapter 3: New IDL Routines

H5 BROWSER

The H5_BROWSER function presents a graphical user interface for viewing and
reading HDF5 files. The browser providesatreeview of the HDF5 file or files, adata
preview window, and an information window for the selected objects. The browser
may be created as either a selection dialog with Open/Cancel buttons, or asa

standal one browser that can import data to the IDL main program level.

Note
Thisfunction is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax
Result = H5_BROWSER([Files] [, /DIALOG_READ])
Return Value

If the DIALOG_READ keyword is specified then the Result is a structure containing
the selected group or dataset (as described in the H5_PARSE function), or a zero if
the Cancel button was pressed. If the DIALOG_READ keyword is not specified then
the Result is the widget ID of the HDF5 browser.

Arguments

Files

An optional scalar string or string array giving the name of the files to initially open.
Additional files may be opened interactively. If Filesis not provided then the user is
automatically presented with a File Open dialog upon startup.

Keywords

DIALOG_READ

If this keyword is set then the HDF5 browser is created as a modal Open/Cancel
dialog instead of a standalone GUI. In this case, the IDL command line is blocked,
and no further input is taken until the Open or Cancel button is pressed. If the
GROUP_LEADER keyword is specified, then that widget ID is used as the group
leader, otherwise adefault group leader base is created.

H5_BROWSER What's New in IDL 5.6

Chapter 3: New IDL Routines 215

All keywords to WIDGET_BASE, such as GROUP_LEADER and TITLE, are
passed on to the top-level base.

Graphical User Interface Options

Open HDF5 file

Click on this button to bring up afile selection dialog. Multiple files may be selected
for parsing. All selected files are added to the tree view.

Show preview

If thistoggle button is selected, then the data within datasets will be shown in the
preview window. One-dimensional datasets will be shown as line plots. Two-
dimensional datasets will be shown asimages, along with any provided image
pal ettes. For three or higher-dimensional datasets, atwo dimensional slicewill be
shown.

Fit in window

If thistoggle button is selected, then the preview image will be scaled larger or
smaller to fit within the preview window. The aspect ratio of the image will be
unchanged.

Flip vertical

If thistoggle button is selected, then the preview image will flipped from top to
bottom.

Flip horizontal

If this toggle button is selected, then the preview image will flipped from | eft to right.

Note
If the DIALOG_READ keyword is present then the following options are available:

Open

Click on this button to close the HDF5 browser, and return an IDL structure
containing the selected group or dataset, as described in the H5_PARSE function.

Cancel

Click on this button to close the HDF5 browser, and return a scalar zero for the result.

What's New in IDL 5.6 H5_BROWSER

216 Chapter 3: New IDL Routines

Note
If the DIALOG_READ keyword is not present then the following options are
available:

Variable name for import

Set thistext string to the name of the IDL variableto construct when importing HDF5
datato IDL structures. If the entered nameis not avalid IDL identifier, then avalid
identifier will be constructed by converting all non-alphanumeric characters to
underscores.

Include data

If this toggle button is selected, then all data within the selected datasets will be read
in from the HDF5 file and included in the IDL structure.

Import to IDL

Click on this button to import the currently selected HDF5 object into the IDL main
program level. Imported variables will consist of anested hierarchy of IDL
structures, as described in the H5_PARSE function.

Done

Click on this button to close the HDF5 browser.
Example

The following example starts up the HDF5 browser on asamplefile:

File = FILEPATH(' hdf5_test. h5', SUBDI R=[' exanples',6'data'])
Result = H5_BROWSER(Fi |l e)

Version History
Introduced 5.6
See Also

H5 PARSE

H5_BROWSER What's New in IDL 5.6

Chapter 3: New IDL Routines 217

H5_CLOSE

The H5_CL OSE procedure flushes all datato disk, closesfile identifiers, and cleans
up memory. Thisroutine closes IDL’slink to its HDF5 libraries. This procedureis
used automatically by IDL when RESET_SESSION isissued, but it may aso be
called if the user desiresto free all HDF5 resources.

Syntax
H5 CLOSE

Arguments
None.

Keywords
None.

Version History
Introduced 5.6

See Also

H5_OPEN

What's New in IDL 5.6 H5 CLOSE

218 Chapter 3: New IDL Routines

H5 GET_LIBVERSION

The H5_GET_LIBVERSION function returns the current version of the HDF5
library used by IDL.

Syntax
Result =H5_GET_LIBVERSION()
Return Value
Returns a string in the form of *maj.min.rel’, where maj is the major number, minis
the minor number, and rel is the release number. An example would be *1.4.3,
representing HDF5 version 1.4.3.
Arguments
None.
Keywords
None.
Version History
Introduced 5.6

See Also

H5_OPEN

H5_GET_LIBVERSION What's New in IDL 5.6

Chapter 3: New IDL Routines 219

H5_OPEN

The H5_OPEN procedureinitializes IDL’'s HDF5 library. This procedure is issued
automatically by IDL when one of IDL’s HDF5 routines is used.

Note
Thisroutine is provided for diagnostic purposes only. You do not need to use this
routine while working with IDL’s HDF5 routines.

Syntax

H5 OPEN
Arguments

None.
Keywords

None.
Version History

Introduced 5.6
See Also

H5 CLOSE, H5_GET_LIBVERSION

What's New in IDL 5.6 H5_OPEN

220 Chapter 3: New IDL Routines

H5_PARSE

The H5_PARSE function recursively descends through an HDF5 file or group and
creates an IDL structure containing object information and data.

Note
Thisfunction is not part of the standard HDF5 interface, but is provided as a

programming convenience.

Syntax

Result = H5_PARSE (File[, /READ_DATA])
or

Result = H5_PARSE (Loc_id, Name[, FILE=string] [, PATH=string]
[,/READ_DATA])

Return Value

The Resultisan IDL structure containing the parsed file or group. The fields within
each structure in Result depend upon the object type.

H5_PARSE What's New in IDL 5.6

Chapter 3: New IDL Routines 221

Structure Fields Common to All Object Types

Field Description
_NAME Object name, or the filenameiif at the top
level
_ICONTYPE Name of associated icon, used by
H5 BROWSER
_TYPE Object type, such as GROUP, DATASET,
DATATYPE, ATTRIBUTE, or LINK

Table 3-1: Structure Fields Common to All Object Types

Additional Fields for Groups, Datasets, and Named Datatypes

Field Description
_FILE The filename to which the object belongs
_PATH Full path to the group, dataset, or
datatype within the file

Table 3-2: Additional Fields for Groups, Datasets, and Named Datatypes

Additional Fields for Groups

Field Description

_COMMENT Comment string

Table 3-3: Additiona Fieldsfor Groups

Additional Fields for Datasets, Attributes, and Named Datatypes

Field Description
_DATATYPE Datatype class, such as HS5T_INTEGER
_STORAGESIZE Size of each value in bytes
_PRECISION Precision of each valuein bits

Table 3-4: Additional Fieldsfor Datasets, Attributes, and Named Datatypes

What's New in IDL 5.6 H5_PARSE

222

Chapter 3: New IDL Routines

Field

Description

_SIGN

For integers, either 'signed' or 'unsigned’;
otherwise anull string

Table 3-4: Additional Fieldsfor Datasets, Attributes, and Named Datatypes

Additional Fields for Datasets and Attributes

Field Description
_DATA Data values stored in the object
_NDIMENSIONS Number of dimensions in the dataspace
_DIMENSIONS List of dataspace dimensions
_NELEMENTS Total number of elementsin the

dataspace

Table 3-5: Additional Fields for Datasets and Attributes

Groups, datasets, datatypes, and attributes will be stored as substructures within
Result. The tag names for these substructures are constructed from the actual object
name by converting all non-alphanumeric characters to underscores, and converting

all charactersto uppercase.

Arguments

File

A string giving the name of the file to parse.

Loc_id

An integer giving the file or group identifier to access.

Name

A string giving the name of the group, dataset, or datatype within Loc_id to parse.

H5_PARSE

What's New in IDL 5.6

Chapter 3: New IDL Routines 223

Keywords

FILE

Set this optional keyword to a string giving the filename associated with the Loc_id.
Thiskeyword is used for filling in the _FILE field within the returned structure, and
isnot required. The FILE keyword isignored if the File argument is provided.

PATH

Set this optional keyword to a string giving the full path associated with the Loc_id.
This keyword isused for filling in the _PATH field within the returned structure, and
isnot required. The PATH keyword isignored if the File argument is provided.

READ_DATA

If this keyword is set, then all datafrom datasetsisread in and stored in the returned
structure. If READ_DATA is not provided then the _DATA field for datasets will be
set to the string '<unread>'.

Note
For attribute objects all datais automatically read and stored in the structure.

Example

The following example shows how to parse afile, and then prints out the parsed
structure.

File = FILEPATH(' hdf5_test.h5', SUBDI R=[' exanples',6'data'])
Result = H5_PARSE(Fi | e)
hel p, Result, /STRUCTURE

When the above commands are entered, IDL prints:
** Structure <5f24468>, 13 tags, |ength=6872, data | engt h=6664,

refs=1:
_NAME STRI NG "D:\RSI\idl 56\ exanpl es\ data\ hdf 5_t est. h5'
_| CONTYPE STRI NG " hdf'
_TYPE STRI NG ' GROUP
_FILE STRI NG "D:\RSI\idl 56\ exanpl es\ data\ hdf 5_t est . h5'
_PATH STRI NG A
_COMMENT STRI NG
_2D | NT_ARRAY STRUCT -> <Anonynous> Array[1]
A _NOTE STRUCT -> <Anonymous> Array[1]
SL_TO 3D _| NT_ARRAY
STRUCT -> <Anonynous> Array[1]

What's New in IDL 5.6 H5_PARSE

224

H5_PARSE

ARRAYS
DATATYPES
| MAGES

LI NKS

Version History
Introduced 5.6
See Also

H5 BROWSER

STRUCT
STRUCT
STRUCT
STRUCT

->
->
->
->

Chapter 3: New IDL Routines

<Anonynous>
<Anonynous>
<Anonynous>
<Anonynous>

hel p, Result.inages. eski nmo, /STRUCTURE
IDL prints:
** Structure <16f1lca0>, 20 tags, |ength=840,
refs=2:
_NAME STRI NG ' Eski mo'
_| CONTYPE STRI NG " binary'
_TYPE STRI NG ' DATASET"
_FILE STRI NG
' D\ RSI \ debug\ exanpl es\ dat a\ hdf 5_t est . h5'
_PATH STRI NG "/images'
_DATA STRI NG ' <unr ead>'
_NDI MENSI ONS LONG 2
_DI MENSI ONS ULONG64 Array] 2]
_NELEMENTS ULONG64
_DATATYPE STRI NG " H5T_I NTEGER
_STORAGESI ZE ULONG 1
_PRECI SI ON LONG 8
_SICN STRI NG "unsi gned'
CLASS STRUCT -> <Anonymous>
| MAGE_VERSI ON STRUCT -> <Anonynous>
| MAGE_SUBCLASS STRUCT -> <Anonynous>
| MAGE_COL ORMODEL
STRUCT -> <Anonynous>
| MAGE_M NMAXRANGE
STRUCT -> <Anonynous>
| MAGE_TRANSPARENCY
STRUCT -> <Anonynous>
PALETTE STRUCT -> <Anonynous>

Array[1]
Array[1]
Array[1]
Array[1]

Now print out the structure of a dataset within the "Images" group:

dat a | engt h=802,

389400

Array[1]
Array[1]
Array[1]
Array[1]
Array[1]

Array[1]
Array[1]

What's New in IDL 5.6

Chapter 3: New IDL Routines 225

H5A CLOSE

The H5A _CL OSE procedure closes the specified attribute and rel eases resources
used by it. After thisroutine is used, the attribute’s identifier is no longer available
until the H5A_OPEN routines are used again to specify that attribute. Further use of
the attribute identifier isillegal.

Syntax
H5A_CLOSE, Attribute_id

Arguments

Attribute_id

An integer representing the attribute’s identifier to be closed.

Keywords
None.

Version History
Introduced 5.6

See Also

H5A_OPEN_NAME, H5A_OPEN_IDX

What's New in IDL 5.6 H5A_CLOSE

226 Chapter 3: New IDL Routines

H5A_GET_NAME

The H5A_GET_NAME function retrieves an attribute name given the attribute
identifier number.

Syntax

Result = HSA_GET_NAME(Attribute_id)
Return Value

Returns a string containing the attribute name.
Arguments

Attribute_id

An integer representing the attribute’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5A_GET_SPACE, H5A_GET_TYPE

H5A_GET_NAME What's New in IDL 5.6

Chapter 3: New IDL Routines 227

H5A_GET_NUM_ATTRS

TheH5A_GET_NUM_ATTRS function returns the number of attributes attached to a
group, dataset, or anamed datatype.

Syntax
Result = HSA_GET_NUM_ATTRS(Loc_id)
Return Value
Returns an integer representing the number of attributes.
Arguments
Loc_id

An integer representing the identifier of the group, dataset, or named datatype to
query.

Keywords
None.
Version History
Introduced 5.6
See Also

H5A_OPEN_IDX

What's New in IDL 5.6 H5A_GET_NUM_ATTRS

228 Chapter 3: New IDL Routines

H5A_GET_SPACE

The H5A_GET_SPACE function returns the identifier number of a copy of the
dataspace for an attribute.

Syntax
Result = HS5A_GET_SPACE(Attribute_id)
Return Value

Returns an integer representing the dataspace’sidentifier. Thisidentifier can be
released with the H5S_CL OSE.

Arguments

Attribute_id

An integer representing the attribute’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5A_GET_NAME, H5A_GET_TYPE, H5S CLOSE

H5A_GET_SPACE What's New in IDL 5.6

Chapter 3: New IDL Routines 229

H5A_GET TYPE

The H5A_GET_TY PE function returns the identifier number of acopy of the
datatype for an attribute.

Syntax
Result = H5A_GET_TY PE(Attribute_id)
Return Value

Returns an integer representing the datatype identifier. Thisidentifier should be
released with the HST_CL OSE.

Arguments

Attribute_id

An integer representing the attribute identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5A_GET_SPACE, H5A_GET_NAME, H5T_CLOSE

What's New in IDL 5.6 H5A_GET_TYPE

230 Chapter 3: New IDL Routines

H5A_OPEN_IDX

The H5A_OPEN_IDX function opens an existing attribute by the index of that
attribute within an HDF5 file.

Syntax
Result = HSA_OPEN_IDX(Loc_id, Index)
Return Value
Returns an integer representing the attribute's identifier number.
Arguments
Loc_id

An integer representing the identifier of the group, dataset, or named datatype
containing the attribute within.

Index

An integer representing the zero-based index of the attribute to be accessed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5A_OPEN_NAME, HS5A_GET _NUM_ATTRS, HS5A_GET_NAME,
H5A_CLOSE

H5A_OPEN_IDX What's New in IDL 5.6

Chapter 3: New IDL Routines 231

H5A_OPEN_NAME

The H5A_OPEN_NAME function opens an existing attribute by the name of that
attribute within an HDF5 file.

Syntax
Result = HSA_OPEN_NAME(Loc_id, Name)
Return Value
Returns an integer representing the attribute's identifier number.
Arguments
Loc_id

An integer representing the identifier of the group, dataset, or named datatype
containing the attribute within.

Name

A string representing the name of the attribute to be accessed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5A_OPEN_IDX, H5A_CLOSE

What's New in IDL 5.6 H5A_OPEN_NAME

232 Chapter 3: New IDL Routines

H5A_READ

The H5A_READ function reads the data within an attribute, converting from the
HDF5 file datatype into the HDF5 memory datatype, and finaly into the
corresponding IDL datatype.

Syntax
Result = H5A_READ(Attribute_id)

Return Value

Returnsan IDL variable containing all of the attribute’s data. For details on different
return types and storage mechanisms, seethe HSD_READ function.

Arguments

Attribute_id

An integer representing the attribute’s identifier to be read.
Keywords

None.
Version History

Introduced 5.6
See Also

H5A_OPEN_NAME, H5A_OPEN_IDX, H5D_READ

H5A_READ What's New in IDL 5.6

Chapter 3: New IDL Routines 233

H5D CLOSE

The H5D_CL OSE procedure closes the specified dataset and rel eases its used
resources. After this routine is used, the dataset’s identifier is no longer available
until the HS5D_GET_SPACE is used again to specify that dataset.

Syntax
H5D CLOSE, Dataset_id

Arguments

Dataset_id

An integer representing the dataset’s identifier to be closed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5D_OPEN

What's New in IDL 5.6 H5D_CLOSE

234 Chapter 3: New IDL Routines

H5D GET_SPACE

The H5D_GET_SPACE function returns an identifier number for a copy of the
dataspace for a dataset.

Syntax
Result = H5D_GET_SPACE(Dataset_id)
Return Value

Returns an integer representing the dataspace’sidentifier. Thisidentifier can be
released with the H5S_CL OSE.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S CLOSE, H5D_GET_STORAGE_SIZE, H5D_GET_TY PE

H5D_GET_SPACE What's New in IDL 5.6

Chapter 3: New IDL Routines 235

H5D GET STORAGE_SIZE

The H5D_GET_STORAGE_SIZE function returns the amount of storage in bytes
required for a dataset. For chunked datasets, this value is the number of allocated
chunks times the chunk size.

Note
This function does not typically need to be called, as IDL will automatically
allocate the necessary memory when reading data.

Syntax

Result = HSD_GET_STORAGE_SIZE(Dataset_id)
Return Value

Returns an integer representing the amount of storagein bytes.
Arguments

Dataset_id

An integer representing the dataset’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S CLOSE, H5D_GET_SPACE, H5D_GET_TYPE

What's New in IDL 5.6 H5D_GET_STORAGE_SIZE

236 Chapter 3: New IDL Routines

H5D GET TYPE

The H5D_GET _TY PE function returns an identifier number for a copy of the
datatype for a dataset.

Syntax
Result = H5D_GET_TY PE(Dataset_id)
Return Value

Returns an integer representing the datatype’s identifier. This identifier can be
released with the HST_CL OSE.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_CLOSE, H5D_GET_SPACE, H5D_GET_STORAGE_SIZE

H5D_GET_TYPE What's New in IDL 5.6

Chapter 3: New IDL Routines 237

H5D_OPEN

The H5D_OPEN function opens an existing dataset within an HDF5 file.
Syntax

Result = H5D_OPEN(Loc_id, Name)
Return Value

Returns an integer representing the dataset’sidentifier. Thisidentifier can be released
with the HSD_CLOSE.

Arguments
Loc_id
An integer representing the identifier of the file or group containing the dataset.

Name

A string representing the name of the dataset to be accessed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5D CLOSE

What's New in IDL 5.6 H5D_OPEN

238 Chapter 3: New IDL Routines

H5D_READ

The H5D_READ function reads the data within a dataset, converting from the HDF5
file datatype into the HDF5 memory datatype, and finally into the corresponding IDL
datatype.

Syntax
Result = H5D_READ(Dataset_id [, FILE_SPACE=id] [, MEMORY_SPACE=id])
Return Value

Returns an IDL variable containing the specified data. The different return types and
storage mechanisms are described below.

Note
The dimensions for the Result variable are constructed using the following
precedence rules:

If MEMORY _SPACE is specified, then the dimensions of the MEMORY _SPACE
are used.

If only FILE_SPACE is specified, then the dimensions of the FILE_SPACE are
used.

If neither MEMORY _SPACE nor FILE_SPACE are specified, then the dimensions
are taken from the Dataset_id.

Arguments

Dataset_id

An integer representing the dataset’s identifier to be read.

H5D_READ What's New in IDL 5.6

Chapter 3: New IDL Routines

Keywords

FILE_SPACE

239

Set this keyword to the file dataspace identifier that should be used when reading the
dataset. The FILE_SPACE keyword may be used to define hyperdabs or elementsfor
subsel ection within the dataset. The default is zero (in HDF5 thisis equivaent to
H5S_ALL), which indicates that the entire dataspace should be read.

MEMORY_SPACE

Set this keyword to the memory dataspace identifier that should be used when
copying the datafrom the file into memory. The MEM ORY _SPA CE keyword may be
used to define hyperslabs or elements in which to place the data. The default is zero
(in HDF5 thisis equivaent to H5S_AL L), which indicates that the memory
dataspace is identical to the file dataspace.

Return Type

When reading in HDF5 datasets, the datatypeis first set to the native HDF5 types.
These native types are then converted to IDL types as shown in the following table:

HDF5 Class HDF5 Datatype IDL Type
H5T_INTEGER H5T_NATIVE_UINTS Byte
HST_BITFIELD H5T_NATIVE_INT16 | nteger
H5T_ENUM

HS5T_NATIVE_UINT16

Unsigned integer

HS5T_NATIVE_INT32

Long integer

HS5T_NATIVE_UINT32

Unsigned long integer

HS5T_NATIVE_INT64

64-bit Integer

HS5T_NATIVE_UINT64

Unsigned 64-bit integer

H5T_REFERENCE

H5T_STD_REF_OBJ

Unsigned 64-bit integer

H5T_FLOAT

HS5T_NATIVE_FLOAT

Floating point

H5T_NATIVE_DOUBLE

Double-precision floating

What's New in IDL 5.6

Table 3-6: HDF and IDL Datatypes

H5D_READ

240 Chapter 3: New IDL Routines
HDF5 Class HDF5 Datatype IDL Type
H5T_STRING H5T_C S1 String
H5T_TIME H5T_C S1 String
H5T_COMPOUND (Member datatypes) Structure
H5T_ARRAY (Super datatype) (Super type)

Table 3-6: HDF and IDL Datatypes (Continued)

Note
Multidimensional datasets are returned in IDL row major order, with the fastest-
varying dimensions listed first. HDF5 uses C column major order, with the fastest-
varying dimensions listed last. In both cases, the memory layout for data elementsis
identical (i.e. no transpose is needed), only the order of the dimensions is reversed.

Note

For the H5T_ARRAY datatype the array dimensions are concatenated with the
dataset dimensions, with the array dimensions varying more rapidly.

Note

Structure tag names are constructed from H5T_COMPOUND member names by
switching to uppercase and converting all non-alphanumeric charactersto

underscores.

Version History
Introduced 5.6

See Also

H5D_CLOSE, H5D_OPEN, H5A_READ, H5S_CREATE_SIMPLE,
H5S SELECT_ELEMENTS, H5S SELECT_HYPERSLAB

H5D_READ

What's New in IDL 5.6

Chapter 3: New IDL Routines 241

H5F CLOSE

The H5F_CL OSE procedure closes the specified file and rel eases resources used by
it. After thisroutineis used, the file's identifier is no longer available until the
H5F_CL OSE routine is used again to specify that file.
Syntax
H5F CLOSE, File id
Arguments
File_id
An integer representing the file's identifier to be closed.
Keywords
None.
Version History
Introduced 5.6

See Also

H5F_OPEN

What's New in IDL 5.6 H5F_CLOSE

242 Chapter 3: New IDL Routines

H5F IS _HDF5

The H5F IS HDFS5 function determinesiif afileisin the HDF5 format.
Syntax

Result = H5F 1S _HDF5(Filename)
Return Value

Returns an integer of 1if thefileisin the HDF5 format, O if otherwise.
Arguments

Filename

A string representing the name of the files to be checked.
Keywords

None.
Version History

Introduced 5.6
See Also

H5F_OPEN

H5F_IS_HDF5 What's New in IDL 5.6

Chapter 3: New IDL Routines 243

H5F _OPEN

The H5F_OPEN function opens an existing HDF5 file.
Syntax

Result = H5F_OPEN(Filename)
Return Value

Returns an integer representing the file identifier number. Thisidentifier can be
rel eased with the HSF_CL OSE.

Arguments

Filename

A string representing the name of the file to be accessed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5F_CLOSE, H5F IS HDF5

What's New in IDL 5.6 H5F_OPEN

244 Chapter 3: New IDL Routines

H5G_CLOSE

The H5G_CL OSE procedure closes the specified group and rel eases resources used
by it. After thisroutine is used, the group’s identifier is no longer available until the
H5F_OPEN routine is used again to specify that group.
Syntax
H5G_CLOSE, Group_id
Arguments
Group_id
An integer representing the group’sidentifier to be closed.
Keywords
None.
Version History
Introduced 5.6

See Also

H5G_OPEN

H5G_CLOSE What's New in IDL 5.6

Chapter 3: New IDL Routines 245

H5G_GET_COMMENT

The H5G_GET_COMMENT function retrieves a comment string from a specified
object.

Syntax
Result = H5G_GET_COMMENT(Loc_id, Name)
Return Value
Returns a string containing the comment, or anull string if no comment exists.
Arguments
Loc_id
An integer representing the identifier of the file or group.

Name

A string representing the name of the object for which to retrieve the comment.
Keywords

None.
Version History

Introduced 5.6
See Also

H5G_GET_OBJNFO

What's New in IDL 5.6 H5G_GET_COMMENT

246 Chapter 3: New IDL Routines

H5G_GET_LINKVAL

The H5G_GET_LINKVAL function returns the name of the object pointed to by a
symbolic link.

Syntax
Result = H5G_GET_LINKVAL(Loc_id, Name)
Return Value
Returns a string containing the name of the object pointed to by asymbolic link.
Arguments
Loc_id
An integer representing the identifier of the file or group.

Name

A string representing the name of the symbolic link for which to retrieve the link
value.

Keywords
None.
Version History
Introduced 5.6
See Also

H5G_GET_OBJNFO

H5G_GET_LINKVAL What's New in IDL 5.6

Chapter 3: New IDL Routines 247

H5G_GET _MEMBER_NAME

The H5G_GET_MEMBER_NAME function retrieves the name of an object within a
group, by its zero-based index.

Note
Thisfunction is not part of the standard HDF5 interface, but is provided as a
programming convenience. The H5Giterate() C function is used to retrieve the
name.

Syntax
Result = H5G_GET_MEMBER_NAME(Loc_id, Name, Index)
Return Value
Returns a string containing the object’s name.
Arguments
Loc_id
An integer representing the identifier of the file or group.
Name
A string representing the name of the group in which to retrieve the member name.

Index

An integer representing the zero-based index of the object for which to retrieve the
name.

Keywords
None.
Version History

Introduced 5.6

What's New in IDL 5.6 H5G_GET_MEMBER_NAME

248 Chapter 3: New IDL Routines

See Also

H5G_GET_NMEMBERS

H5G_GET_MEMBER_NAME What's New in IDL 5.6

Chapter 3: New IDL Routines 249

H5G_GET _NMEMBERS

The H5G_GET_NMEMBERS function returns the number of objects within agroup.

Note
Thisfunction is not part of the standard HDF5 interface, but is provided as a
programming convenience. The H5Giterate() C function is used to retrieve the
number of members.

Syntax
Result = H5G_GET_NMEMBERS(Loc_id, Name)
Return Value
Returns an integer representing the number of objects.
Arguments
Loc_id
An integer representing the identifier of the file or group.

Name

A string representing the name of the group for which to retrieve the number of
members.

Keywords
None.
Version History
Introduced 5.6
See Also

H5G_GET_MEMBER_NAME

What's New in IDL 5.6 H5G_GET_NMEMBERS

250 Chapter 3: New IDL Routines

H5G_GET_OBJINFO

The H5G_GET_OBJINFO function retrieves information from a specified object.
Syntax

Result = H5G_GET_OBJINFO(Loc_id, Name [, /FOLLOW_LINK])
Return Value

Returns a structure of the name H5F_STAT containing the following fields:
FILENO

Thisfield contains two integers which, along with the OBJINO field, uniquely
identify the object among all open HDF5 files.

OBJNO

Thisfield contains two integers which, along with the FILENO field, uniquely
identify the object among al open HDF5 files. If al four valuesin FILENO and
OBJNO are the same between two objects, then these two objects are the same.

NLINK
The number of hard links to the object. If thisfield is zero, then the objectisa
symbolic link.
TYPE
A string representing the object type. Possible values are:
e ‘LINK’
+ ‘GROUP
« ‘DATASET
« ‘TYPE

* ‘UNKNOWN’

H5G_GET_OBJINFO What's New in IDL 5.6

Chapter 3: New IDL Routines 251

MTIME

The modification time for the object, in seconds since 1 January 1970.

Tip
You can convert the MTIME field from seconds to a date/time string using
SYSTIME(O, mtime). See SY STIME for more information.

LINKLEN

If the object isa symbolic link (and the FOLLOW_LINK keyword is not set), then
thisfield will contain the length in characters of the link value. The link value itself
may beretrieved using H5D_GET_LINKVAL.
Arguments
Loc_id
An integer representing the identifier of the file or group.

Name

A string representing the name of the object for which to retrieve the information
structure.

Keywords

FOLLOW_LINK

If Nameisasymbolic link, then set this keyword to follow the symbolic link and
retrieve information about the linked object. The default isto return information
about the symbolic link itself.

Version History
Introduced 5.6

See Also

H5G_GET_LINKVAL

What's New in IDL 5.6 H5G_GET_OBJINFO

252 Chapter 3: New IDL Routines

H5G_OPEN

The H5G_OPEN function opens an existing group within an HDF5 file.
Syntax

Result = H5G_OPEN(Loc_id, Name)
Return Value

Returns an integer representing the group’s identifier number. This identifier can be
released with the H5G_CL OSE.

Arguments

Loc_id

An integer representing the identifier of the file or group containing the group to be
accessed.

Name

A string representing the name of the group to be accessed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5G_CLOSE

H5G_OPEN What's New in IDL 5.6

Chapter 3: New IDL Routines 253

H5I_ GET TYPE

The H51_GET_TY PE function returns the object’s type.
Syntax

Result = H5I_GET_TY PE(Obj_id)
Return Value

Returns a string representing the object type. Possible return values include:
e ‘FILE
+ ‘GROUF
e ‘DATATYPE'
« ‘DATASPACE'
« ‘DATASET
« ‘ATTR
« ‘BADID’

Arguments
Obj_id
An integer representing the object’s identifier for which to return the type.
Keywords
None.
Version History

Introduced 5.6

What's New in IDL 5.6 H5I_GET_TYPE

254 Chapter 3: New IDL Routines

H5R_DEREFERENCE

The H5R_DEREFERENCE function opens a reference and returns the object
identifier.

Syntax
Result = HSR_DEREFERENCE(Loc_id, Reference)
Return Value

The Result is an integer giving the identifier number. Thisidentifier should be
rel eased using the appropriate close procedure.

Arguments
Loc_id
An integer giving the identifier in which the reference dataset is located.

Reference

An integer giving the reference number to open.
Keywords

None.
Version History

Introduced 5.6
See Also

H5R_GET_OBJECT_TYPE

H5R_DEREFERENCE What's New in IDL 5.6

Chapter 3: New IDL Routines 255

H5R_GET OBJECT TYPE

The H5R_GET_OBJECT_TY PE function returns the type of object that an object
reference pointsto.

Syntax
Result = H5R_GET_OBJECT_TYPE(Loc_id, Reference)
Return Value

The Result is astring giving the object type. Possible return valuesinclude:

e ‘FILE

« ‘GROUP

« ‘DATASET

« ‘DATASPACE

« ‘DATASET

« ‘ATTR

« ‘BADID’
Arguments

Loc_id

An integer giving the identifier in which the reference dataset is located.
Reference

An integer giving the reference number to query.
Keywords

None.
Version History

Introduced 5.6

What's New in IDL 5.6 H5R_GET_OBJECT_TYPE

256 Chapter 3: New IDL Routines

See Also

H5R_DEREFERENCE

H5R_GET_OBJECT_TYPE What's New in IDL 5.6

Chapter 3: New IDL Routines 257

H5S_ CLOSE

The H5S_CL OSE procedure releases and terminates access to a dataspace. After this
routine is used, the dataspace’s identifier is no longer available.

Warning
Failureto release a dataspace using this procedure will result in resource leaks.

Syntax
H5S_CLOSE, Dataspace id
Arguments

Dataspace _id

An integer representing the dataspace’s identifier to close.
Keywords

None.
Version History

Introduced 5.6
See Also

H5D_GET_SPACE

What's New in IDL 5.6 H5S CLOSE

258 Chapter 3: New IDL Routines

H5S_COPY

The H5S_COPY function copies an existing dataspace.
Syntax

Result = H5S_COPY (Dataspace _id)
Return Value

Returns an integer representing the dataspace’s identifier number. The dataspace
identifier can be released with the H5S CLOSE.

Arguments

Dataspace _id

An integer representing the dataspace identifier to copy.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S CREATE_SIMPLE, H5S CLOSE

H5S COPY What's New in IDL 5.6

Chapter 3: New IDL Routines 259

H5S_CREATE_SIMPLE

The H5S_CREATE_SIMPLE function creates a simple dataspace.

Syntax

Result = H5S _CREATE_SIMPLE(Dimensions [, MAX_DIMENSIONS=vector])

Return Value

Returns an integer representing the dataspace’s identifier number. This dataspace
identifier can be released with the H5S CLOSE.

Arguments

Dimensions

Set this argument to a vector containing the dimensions for the dataspace.

Note
The Dimensions argument should be specified in IDL’srow-major order. Internally,
the dimensions will be reversed to match HDF5/C’s column-major order.

Keywords
MAX_DIMENSIONS

Set this keyword to a vector containing the maximum dimensions for the dataspace.
The MAX_DIMENSIONS must have the same number of elements as the
Dimensions argument. If MAX_DIMENSIONS is omitted then the maximum
dimensions are set to Dimensions. You can useavalue of -1in MAX_DIMENSIONS
to indicate an unlimited dimension.

Note
The MAX_DIMENSIONS keyword should be specified in IDL’s row-major order.
Internally, the dimensions will be reversed to match HDF5/C’s column-major order.

Version History

Introduced 5.6

What's New in IDL 5.6 H5S_CREATE_SIMPLE

260 Chapter 3: New IDL Routines

See Also

H5S_CLOSE, H5S_COPY

H5S_CREATE_SIMPLE What's New in IDL 5.6

Chapter 3: New IDL Routines 261

H5S GET SELECT BOUNDS

The H5S _GET_SELECT_BOUNDS function retrieves the coordinates of the
bounding box containing the current dataspace selection.

Syntax
Result = H5S GET_SELECT_BOUNDS(Dataspace_id)
Return Value
Returns an (m x 2) array, where mis the number of dimensions (or rank) of the
dataspace. The first row in the array isthe starting coordinates of the bounding box,
while the second row is the ending coordinates.
Arguments
Dataspace _id
An integer representing the dataspace’sidentifier to be queried.
Keywords
None.
Version History
Introduced 5.6
See Also
H5S GET_SIMPLE_EXTENT_NPOINTS, H5S GET_SELECT NPOINTS,

H5S GET_SELECT_ELEM_NPOINTS,
H5S GET_SELECT _HYPER_NBLOCKS

What's New in IDL 5.6 H5S_GET_SELECT_BOUNDS

262 Chapter 3: New IDL Routines

H5S_GET SELECT _ELEM_NPOINTS

The H5S GET_SELECT _ELEM_NPOINTS function determines the number of
element pointsin the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_ELEM_NPOINTS(Dataspace id)
Return Value

Returns an integer representing the number of element points.
Arguments

Dataspace _id

An integer representing the dataspace’sidentifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SELECT_BOUNDS, H5S_GET_SELECT_HYPER_NBLOCKS,
H5S GET_SELECT_NPOINTS, H5S _GET_SIMPLE_EXTENT_NPOINTS

H5S_GET_SELECT_ELEM_NPOINTS What's New in IDL 5.6

Chapter 3: New IDL Routines 263

H5S_GET SELECT ELEM_POINTLIST

The H5S GET_SELECT_ELEM_POINTLIST function returns alist of the element
points in the current dataspace selection.

Syntax

Result = H5S GET_SELECT_ELEM_POINTLIST(Dataspace_id [, START=valu€]
[, NUMBER=value])

Return Value

The Result isan (m x n) array, where m is the number of dimensions (or rank) of the
dataspace, and n is the number of selected points. Each row contains the coordinates
for an element selection point.

Arguments
Dataspace _id
An integer representing the dataspace’s identifier to be queried.
Keywords
START

Set this keyword to an integer representing the point to start with, counting from 0.
The default is START = 0.

NUMBER

Set this keyword to an integer representing the number of element points to return.
The default isNUMBER = (N - START), where N is the total number of element
points in the selection.

Version History

Introduced 5.6

What's New in IDL 5.6 H5S_GET_SELECT_ELEM_POINTLIST

264 Chapter 3: New IDL Routines

See Also

H5S GET_SELECT_ELEM_NPOINTS, H5S GET_SELECT_NPOINTS

H5S_GET_SELECT_ELEM_POINTLIST What's New in IDL 5.6

Chapter 3: New IDL Routines 265

H5S_GET SELECT HYPER_BLOCKLIST

The H5S GET_SELECT_HYPER_BLOCKLIST function returns alist of the
hyperdab blocks in the current dataspace selection.

Syntax

Result = H5S GET_SELECT_HYPER_BLOCKLIST(Dataspace id
[, START=value] [, NUMBER=value])

Return Value

Returns an (m x 2n) array, where misthe number of dimensions (or rank) of the
dataspace. The 2n rows of Result contain the list of blocks. The first row contains the
start coordinates of the first block, followed by the next row which contains the
opposite corner coordinates, followed by the next row which contains the start
coordinates of the second block, etc.

Arguments

Dataspace _id

An integer representing the dataspace’s identifier to be queried.
Keywords

START

Set this keyword to an integer representing the block to start with, counting from 0.
The default is START = 0.

NUMBER

Set this keyword to an integer representing the number of blocks to return. The
default isNUMBER = (N - START), where N isthe total number of blocksin the
selection.

Version History

Introduced 5.6

What's New in IDL 5.6 H5S_GET_SELECT_HYPER_BLOCKLIST

266 Chapter 3: New IDL Routines

See Also

H5S GET_SELECT_HYPER_NBLOCKS, H5S GET_SELECT_NPOINTS

H5S_GET_SELECT_HYPER_BLOCKLIST What's New in IDL 5.6

Chapter 3: New IDL Routines 267

H5S_GET_SELECT HYPER_NBLOCKS

The H5S _GET_SELECT_HYPER_NBLOCKS function determines the number of
hyperdab blocks in the current dataspace selection.

Syntax

Result = H5S_GET_SELECT_HYPER_NBLOCK S(Dataspace id)
Return Value

Returns an integer representing the number of blocks.
Arguments

Dataspace _id

An integer representing the dataspace identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SELECT_BOUNDS, H5S_GET_SELECT_ELEM_NPOINTS,
H5S GET_SELECT_NPOINTS, H5S_GET_SIMPLE_EXTENT_NPOINTS

What's New in IDL 5.6 H5S_GET_SELECT HYPER_NBLOCKS

268 Chapter 3: New IDL Routines

H5S_GET_SELECT _NPOINTS

The H5S GET_SELECT_NPOINTS function determines the number of elementsin
a dataspace selection.

Syntax

Result = H5S_GET_SELECT_NPOINTS(Dataspace id)
Return Value

Returns an integer representing the number of elements.
Arguments

Dataspace _id

An integer representing the dataspace identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SELECT BOUNDS, H5S GET _SELECT ELEM_NPOINTS,

H5S_GET_SELECT_HYPER _NBLOCKS,
H5S_GET_SIMPLE_EXTENT_NPOINTS

H5S_GET_SELECT_NPOINTS What's New in IDL 5.6

Chapter 3: New IDL Routines 269

H5S_GET_SIMPLE_EXTENT DIMS

TheH5S GET_SIMPLE_EXTENT_DIMSfunction returnsthedimension sizesfor a
dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_DIMS(Dataspace id
[, MAX_DIMENSIONS=variable])

Return Value
Returns a vector containing the dimension sizes.
Arguments
Dataspace _id
An integer representing the dataspace’s identifier to be queried.
Keywords
MAX_DIMENSIONS

Set this keyword to a named variable to return the maximum dimension sizes for the
dataspace.

Version History
Introduced 5.6
See Also

H5S_GET_SIMPLE_EXTENT_NDIMS,
H5S_GET_SIMPLE_EXTENT_NPOINTS, H5S_GET_SIMPLE_EXTENT_TYPE

What's New in IDL 5.6 H5S_GET_SIMPLE_EXTENT DIMS

270 Chapter 3: New IDL Routines

H5S_GET_SIMPLE_EXTENT NDIMS

The H5S_GET_SIMPLE_EXTENT_NDIMS function determines the number of
dimensions (or rank) of a dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_NDIMS(Dataspace _id)
Return Value

Returns an integer representing the number of dimensions.
Arguments

Dataspace _id

An integer representing the dataspace’sidentifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SIMPLE_EXTENT_DIMS, H5S GET_SIMPLE_EXTENT_NPOINTS,
H5S GET_SIMPLE_EXTENT_TYPE

H5S_GET_SIMPLE_EXTENT_NDIMS What's New in IDL 5.6

Chapter 3: New IDL Routines 271

H5S_GET_SIMPLE_EXTENT NPOINTS

The H5S GET_SIMPLE_EXTENT_NPOINTS function determines the number of
elements in a dataspace.

Syntax

Result = H5S_GET_SIMPLE_EXTENT_NPOINTS(Dataspace id)
Return Value

Returns an integer representing the number of elements.
Arguments

Dataspace _id

An integer representing the dataspace’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6

See Also

H5S GET_SIMPLE_EXTENT_DIMS, H5S GET_SIMPLE_EXTENT_NDIMS,
H5S GET_SIMPLE_EXTENT_TYPE

What's New in IDL 5.6 H5S_GET_SIMPLE_EXTENT_NPOINTS

272 Chapter 3: New IDL Routines

H5S_GET_SIMPLE_EXTENT TYPE

The H5S GET_SIMPLE_EXTENT_TY PE function returns the current class of a
dataspace.

Syntax
Result = H5S GET_SIMPLE_EXTENT_TY PE(Dataspace_id)
Return Value

Returns a string containing the class. Possible values are:
« ‘H5S SCALAR’
e ‘H5S SIMPLE’
« ‘H5S COMPLEX’
*+ ‘H5S5 NO_CLASS

Arguments
Dataspace _id

An integer representing the dataspace’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S_GET_SIMPLE_EXTENT_DIMS, H5S_GET_SIMPLE_EXTENT_NDIMS,
H5S_GET_SIMPLE_EXTENT_NPOINTS

H5S_GET_SIMPLE_EXTENT_TYPE What's New in IDL 5.6

Chapter 3: New IDL Routines 273

H5S IS SIMPLE

The H5S _|IS_SIMPLE function determines whether a dataspace is a simple
dataspace.

Syntax

Result = H5S IS SIMPLE(Dataspace _id)
Return Value

Returns an integer of 1 if the dataspaceissimple and O if it is not.
Arguments

Dataspace _id

An integer representing the dataspace’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6

What's New in IDL 5.6 H5S_IS_SIMPLE

274

Chapter 3: New IDL Routines

H5S_OFFSET_SIMPLE

The H5S_OFFSET_SIMPLE procedure sets the selection offset for asimple
dataspace. The offset allows the same shaped sel ection to be moved to different
locations within the dataspace.
Syntax
H5S _OFFSET_SIMPLE, Dataspace _id, Offset
Arguments
Dataspace _id
An integer representing the dataspace’s identifier on which to set the selection off set.

Offset

An m-element vector of integers, where misthe number of dataspace dimensions,
containing the offsets.

Keywords
None.
Version History
Introduced 5.6
See Also

H5S GET_SELECT BOUNDS, H5S SELECT ELEMENTS,
H5S SELECT HYPERSLAB

H5S_OFFSET_SIMPLE What's New in IDL 5.6

Chapter 3: New IDL Routines 275

H5S_SELECT_ALL

The H5S_SELECT_ALL procedure selects the entire extent of a dataspace.
Syntax

H5S SELECT_ALL, Dataspace id
Arguments

Dataspace _id

An integer representing the dataspace’s identifier to be selected.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SELECT_NPOINTS, H5S_SELECT_ELEMENTS,
H5S SELECT_HYPERSLAB, H5S_SELECT_NONE

What's New in IDL 5.6 H5S_SELECT_ALL

276 Chapter 3: New IDL Routines
H5S SELECT _ELEMENTS

The H5S _SELECT_ELEMENTS procedure selects array elements to be included in
the selection for a dataspace.

Syntax

H5S _SELECT_ELEMENTS, Dataspace_id, Coordinates, /RESET

Arguments

Dataspace _id

An integer representing the dataspace’s identifier on which to set the selection.
Coordinates

An m-element vector, or an (m x n) array, where mis the number of dimensions (or
rank) of the dataspace, and n is the number of selected points. Each row contains the
coordinates for an element selection point.

Keywords
RESET

Set this keyword to replace the existing selection with the new Coordinates. The
default is RESET = 0 which adds the new selection to the existing selection.

Note
The RESET keyword must be set (/RESET or RESET = 1) or the
H5S _SELECT_ELEMENTS routine will result in an error message. This error
message comes from the HDF5 library, which forces a default of RESET = 0 but
insists on this keyword being set for this routine to work.

Version History

Introduced 5.6

H5S_SELECT_ELEMENTS What's New in IDL 5.6

Chapter 3: New IDL Routines 277

See Also
H5S GET_SELECT_ELEM_NPOINTS,

H5S GET_SELECT_ELEM_POINTLIST, H5S GET_SELECT_NPOINTS,
H5S SELECT_HYPERSLAB

What's New in IDL 5.6 H5S_SELECT_ELEMENTS

278 Chapter 3: New IDL Routines

H5S SELECT _HYPERSLAB

The H5S_SELECT_HYPERSLAB procedure selects a hyperslab region to be
included in the selection for a dataspace.

Note
If al of the elementsin the selected hyperslab region are aready selected, then a
new hyperslab region is not created.

Syntax

H5S_SELECT_HYPERSLAB, Dataspace id, Start, Count, [, BLOCK=vector]
[, /RESET] [, STRIDE=vector]

Arguments

Dataspace _id
An integer representing the dataspace’s identifier on which to set the selection.
Start

An m-element vector of integers, where misthe number of dataspace dimensions,
containing the starting location for the hyperdab.

Count

An m-element vector of integers containing the number of blocks to select in each
dimension.

Keywords

BLOCK

Set this keyword to an m-element vector of integers containing the size of a block.
The default is a single element in each dimension (for example BLOCK issetto a
vector of al 1's).

RESET

Set this keyword to replace the existing selection with the new selection. The default
is RESET=0 which adds the new selection to the existing selection.

H5S_SELECT_HYPERSLAB What's New in IDL 5.6

Chapter 3: New IDL Routines 279

STRIDE

Set this keyword to an m-element vector of integers containing the number of
elements to move in each dimension when selecting blocks. The default is to move a
single element in each dimension (for example STRIDE is set to avector of al 1's).
STRIDE values must be greater than zero.

Version History
Introduced 5.6
See Also
H5S GET _SELECT_HYPER BLOCKLIST,

H5S GET_SELECT_HYPER_NBLOCKS, H5S GET_SELECT_NPOINTS,
H5S SELECT_ELEMENTS

What's New in IDL 5.6 H5S_SELECT_HYPERSLAB

280 Chapter 3: New IDL Routines

H5S_SELECT NONE

TheH5S_SELECT_NONE procedure resets the dataspace sel ection region to include
no elements.

Syntax

H5S_SELECT_NONE, Dataspace id
Arguments

Dataspace _id

An integer representing the dataspace’s identifier to be reset.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SELECT_NPOINTS, H5S _SELECT_ALL,
H5S SELECT_ELEMENTS, H5S SELECT_HYPERSLAB

H5S_SELECT_NONE What's New in IDL 5.6

Chapter 3: New IDL Routines 281

H5S_SELECT_VALID

The H5S_SELECT_VALID function verifies that the selection iswithin the extent of
a dataspace.

Syntax

Result = H5S_SELECT_VALID(Dataspace id)
Return Value

Returns an integer of 1 if the selection iswithin the dataspace and O if it is not.
Arguments

Dataspace _id

An integer representing the dataspace’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5S GET_SELECT_NPOINTS, H5S_SELECT_ELEMENTS,
H5S SELECT_HYPERSLAB

What's New in IDL 5.6 H5S_SELECT_VALID

282 Chapter 3: New IDL Routines

H5T CLOSE

The H5T_CL OSE procedure releases the specified datatype's identifier and releases
resources used by it. After this routine is used, the datatype’s identifier is no longer
available until the HST_OPEN routine is used again to specify that datatype.
Syntax
H5T_CLOSE, Datatype_id
Arguments
Datatype_id
An integer representing the datatype's identifier to be closed.
Keywords
None.
Version History
Introduced 5.6

See Also

H5T_OPEN

H5T CLOSE What's New in IDL 5.6

Chapter 3: New IDL Routines 283

H5T _COMMITTED

The H5T_COMMITTED function determines whether a datatype is a named
datatype or atransient type.

Syntax

Result = HST_COMMITTED(Datatype id)
Return Value

Returns an integer of 1 if the datatype is named and O if the datatype is transient.
Arguments

Datatype_id

An integer representing the datatyped identifier to be queried.
Keywords

None.
Version History

Introduced 5.6

What's New in IDL 5.6 H5T_COMMITTED

284 Chapter 3: New IDL Routines

H5T_COPY

The H5T_COPY function copies an existing datatype. The returned type is transient
and unlocked.

Syntax
Result = H5T_COPY (Datatype _id)
Return Value

Returns an integer representing the datatype’s identifier number. Thisidentifier can
be released with the HST_CL OSE procedure.

Arguments
Datatype_id

An integer representing the datatype’'s identifier to be copied.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_CLOSE, H5T_OPEN

H5T_COPY What's New in IDL 5.6

Chapter 3: New IDL Routines 285

H5T EQUAL

The H5T_EQUAL function determines whether two datatype identifiers refer to the
same datatype.

Syntax
Result = H5T_EQUAL (Datatype_id1, Datatype_id2)
Return Value

Returns an integer of 1 if the identifiers refer to the same datatype and O if they do
not.

Arguments
Datatype_id1
An integer representing the first datatype identifier.
Datatype_id2

An integer representing the second datatype identifier.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_COPY

What's New in IDL 5.6 H5T_EQUAL

286 Chapter 3: New IDL Routines

H5T GET ARRAY_DIMS

The H5T_GET_ARRAY _DIMS function returns the dimension sizes for an array
datatype object.

Syntax

Result = H5T_GET_ARRAY_DIMS(Datatype_id [, PERMUTATIONS=variable])
Return Value

Returns a vector containing the dimension sizes.
Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

PERMUTATIONS

Set this keyword to a named variable in which to return the dimension permutations
(C versus FORTRAN).

Version History
Introduced 5.6
See Also

H5T_GET_ARRAY_NDIMS

H5T_GET_ARRAY_DIMS What's New in IDL 5.6

Chapter 3: New IDL Routines 287

H5T GET_ARRAY _NDIMS

The H5T_GET_ARRAY _NDIMS function determines the number of dimensions (or
rank) of an array datatype object.

Syntax

Result = HST_GET_ARRAY _NDIM S(Datatype id)
Return Value

Returns an integer representing the number of dimensions.
Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_ARRAY_DIMS

What's New in IDL 5.6 H5T_GET_ARRAY_NDIMS

288 Chapter 3: New IDL Routines

H5T GET CLASS

The H5T_GET_CLASS function returns the datatype’s class.
Syntax

Result = H5T_GET_CLASS(Datatype _id)
Return Value

Returns a string containing the datatype’s class. Possible return values include:
e ‘H5T_INTEGER
« ‘H5T_FLOAT
e ‘H5T_TIMFE
e ‘H5T_STRING
e ‘HS5T_BITFIELD’
« ‘H5T_OPAQUE’
« ‘H5T_COMPOUND’
« ‘H5T_REFERENCFE
e ‘HS5T_ENUM’
e ‘H5T_VLEN
« ‘H5T_ARRAY’
« ‘H5T_NO CLASS

Arguments
Datatype_id
An integer representing the datatype’s identifier to be queried.

Keywords

None.

H5T_GET_CLASS What's New in IDL 5.6

Chapter 3: New IDL Routines 289

Version History
Introduced 5.6
See Also

H5T_GET_SIZE, H5T_GET_SUPER

What's New in IDL 5.6 H5T_GET_CLASS

290 Chapter 3: New IDL Routines

H5T GET CSET

The H5T_GET_CSET function returns the character set type of a string datatype.
Syntax

Result = H5T_GET_CSET (Datatype _id)
Return Value

Returns a string containing the character set type. Possible vaues are:
e ‘ASCII" — USASCII
¢ ‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6

H5T_GET_CSET What's New in IDL 5.6

Chapter 3: New IDL Routines 291

H5T GET_EBIAS

The H5T_GET_EBIAS function returns the exponent bias of a floating-point type.
Syntax

Result = H5T_GET_EBIAS(Datatype_id)
Return Value

Returns an integer representing the exponent bias.
Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_FIELDS

What's New in IDL 5.6 H5T_GET_EBIAS

292 Chapter 3: New IDL Routines

H5T_GET_FIELDS

The H5T_GET_FIEL DS function retrieves information about the positions and sizes
of bit fields within afloating-point datatype.

Syntax
Result = H5T_GET_FIELDS(Datatype _id)
Return Value
Returns a structure named H5T_GET_FIEL DS containing the following tags:

TYPE_ID

The datatype'sidentifier Datatype id.
SIGN_POS

The position of the floating-point sign bit.
EXP_POS

The bit position of the exponent.
EXP_SIZE

The size of the exponent in bits.
MAN_POS

The bit position of the mantissa.
MAN_SIZE

The size of the mantissa in bits.
Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

H5T_GET_FIELDS What's New in IDL 5.6

Chapter 3: New IDL Routines 293

Keywords
None.
Version History
Introduced 5.6
See Also

H5T_GET_EBIAS, H5T_GET_INPAD, H5T_GET_NORM, H5T_GET_OFFSET,
H5T_GET_ORDER, H5T _GET_PAD, H5T _GET_PRECISION

What's New in IDL 5.6 H5T_GET_FIELDS

294 Chapter 3: New IDL Routines

H5T_GET_INPAD

The H5T_GET_INPAD function returns the padding method for unused internal bits
within afloating-point datatype.

Syntax
Result = H5T_GET_INPAD(Datatype_id)
Return Value

Returns an integer representing the padding method. Possible values are:
» 0— Background set to zeroes
* 1 — Background set to ones

* 2 — Background left unchanged
Arguments
Datatype_id

An integer representing the datatype identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_FIELDS

H5T_GET_INPAD What's New in IDL 5.6

Chapter 3: New IDL Routines 295

H5T GET_MEMBER_CLASS

The H5T_GET_MEMBER_CLASS function returns the datatype class of a
compound datatype member.

Syntax
Result = H5T_GET_MEMBER_CLASS(Datatype_id, Member)
Return Value

Returns a string containing the datatype class. Possible values are:
e ‘H5T_INTEGER’
« ‘H5T_FLOAT
e ‘H5T_TIMFE
e ‘H5T_STRING
e ‘H5T _BITFIELD’
« ‘H5T_OPAQUE’
+ ‘H5T_COMPOUND’
e ‘H5T_REFERENCFE’
« ‘H5T_ENUM’
e ‘H5T_VLEN
« ‘H5T_ARRAY’
« ‘H5T_NO _CLASS

Arguments
Datatype_id
An integer representing the datatype's identifier to be queried.

Member

An integer representing the member index, starting at zero.

What's New in IDL 5.6 H5T_GET_MEMBER_CLASS

296 Chapter 3: New IDL Routines

Keywords
None.
Version History
Introduced 5.6
See Also

H5T_GET_MEMBER_NAME, H5T_GET_MEMBER_OFFSET,
H5T_GET_MEMBER_TYPE, H5T_GET_NMEMBERS

H5T_GET_MEMBER_CLASS What's New in IDL 5.6

Chapter 3: New IDL Routines 297

H5T GET _MEMBER_NAME

The H5T_GET_MEMBER_NAME function returns the datatype name of a
compound datatype member.

Syntax
Result = H5T_GET_MEMBER_NAME(Datatype _id, Member)
Return Value
Returns a string containing the datatype name.
Arguments
Datatype_id
An integer representing the datatype’s identifier to be queried.

Member

An integer representing the member index, starting at zero.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_OFFSET,
H5T_GET_MEMBER_TYPE, H5T _GET_NMEMBERS

What's New in IDL 5.6 H5T_GET_MEMBER_NAME

298 Chapter 3: New IDL Routines

H5T _GET_MEMBER_OFFSET

TheH5T_GET_MEMBER_OFFSET function returnsthe byte offset of afield within
a compound datatype.

Syntax
Result = H5T_GET_MEMBER_OFFSET (Datatype_id, Member)
Return Value
Returns an integer representing the byte offset.
Arguments
Datatype_id
An integer representing the datatype’s identifier to be queried.

Member

An integer representing the member index, starting at zero.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_NAME,
H5T_GET_MEMBER_TYPE, H5T_GET_NMEMBERS

H5T_GET_MEMBER_OFFSET What's New in IDL 5.6

Chapter 3: New IDL Routines 299

H5T GET MEMBER_TYPE

The H5T_GET_MEMBER_TY PE function returns the datatype identifier for a
specified member within a compound datatype.

Syntax
Result = H5T_GET_MEMBER_TY PE(Datatype_id, Member)
Return Value

Returns an integer representing the datatype identifier. Thisidentifier should be
closed using H5T_CLOSE.

Arguments
Datatype_id
An integer representing the datatype's identifier to be queried.

Member

An integer representing the member index, starting at zero.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_NAME,
H5T_GET_MEMBER_OFFSET, H5T_CLOSE, H5T_GET_NMEMBERS

What's New in IDL 5.6 H5T_GET_MEMBER_TYPE

300 Chapter 3: New IDL Routines

H5T GET _NMEMBERS

The H5T_GET_NMEMBERS function returns the number of fieldsin a compound
datatype.

Syntax

Result = HST_GET_NMEMBERS(Datatype _id)
Return Value

Returns an integer representing the number of fields.
Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_MEMBER_CLASS, H5T_GET_MEMBER_NAME,
H5T_GET_MEMBER_OFFSET, H5T_GET_MEMBER_TYPE

H5T_GET_NMEMBERS What's New in IDL 5.6

Chapter 3: New IDL Routines 301

H5T GET_NORM

The H5T_GET_NORM function returns the mantissa normalization of afloating-
point datatype.

Syntax
Result = H5T_GET_NORM(Datatype_id)
Return Value

Returns a string containing the mantissa normalization. Possible values are:
* ‘IMPLIED’ — Mogt-significant bit of mantissa not stored, aways 1
+ '‘MSBSET — Most-significant bit of mantissais always 1
* ‘NORM’ — Mantissais not normalized
* ‘ERROR’

Arguments
Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_FIELDS

What's New in IDL 5.6 H5T_GET_NORM

302 Chapter 3: New IDL Routines

H5T GET OFFSET

The H5T_GET_OFFSET function returns the bit offset of the first significant bit in
an atomic datatype. The offset is the number of bits of padding that follows the
significant bits (for big endian) or precedes the significant bits (for little endian).
Syntax
Result = H5T_GET_OFFSET (Datatype_id)
Return Value
Returns an integer representing the bit offset.
Arguments
Datatype_id
An integer representing the datatype’s identifier to be queried.
Keywords
None.
Version History
Introduced 5.6

See Also

H5T_GET_FIELDS

H5T_GET_OFFSET What's New in IDL 5.6

Chapter 3: New IDL Routines

H5T_GET_ORDER

The H5T_GET_ORDER function returns the byte order of an atomic datatype.

Syntax

Result = H5T_GET_ORDER(Datatype _id)

Return Value

Returns a string representing the byte order. Possible values are:
‘LE’ — Little endian

‘BE’ — Big endian

‘VAX’ — VAX mixed ordering
‘NONFE’

‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.

Keywords

None.

Version History

Introduced 5.6

See Also

H5T_GET_INPAD, H5T_GET_PAD, H5T_GET_PRECISION

What's New in IDL 5.6

303

H5T_GET_ORDER

304 Chapter 3: New IDL Routines

H5T_GET_PAD

The H5T_GET_PAD function returns the padding method of the least significant bit
(Isb) and mogt significant bit (msb) of an atomic datatype.

Syntax
Result = H5T_GET_PAD(Datatype _id)
Return Value

Returns a two-element vector [Isb, msb]. Possible values are:
e 0— Background set to zeroes
* 1 — Background set to ones

» 2 — Background left unchanged.
Arguments
Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_INPAD, H5T_GET_ORDER, H5T _GET_PRECISION

H5T_GET_PAD What's New in IDL 5.6

Chapter 3: New IDL Routines 305

H5T GET PRECISION

The H5T_GET_PRECISION function returns the precision in bits of an atomic
datatype. The precision is the number of significant bits which, unless padded, is 8
times larger than the byte size from H5T _GET_CSET.
Syntax
Result = H5T_GET_PRECISION(Datatype _id)
Return Value
Returns an integer representing the bit precision.
Arguments
Datatype_id
An integer representing the datatype’s identifier to be queried.
Keywords
None.
Version History
Introduced 5.6

See Also

H5T_GET_INPAD, H5T_GET_ORDER, H5T_GET_PAD, H5T GET_SIZE

What's New in IDL 5.6 H5T_GET_PRECISION

306 Chapter 3: New IDL Routines

H5T GET_SIGN

The H5T_GET_SIGN function returns the sign type for an integer datatype.
Syntax

Result = H5T_GET_SIGN(Datatype_id)
Return Value

Returns an integer representing the sign type. Possible values are:
e -1—Error
 0— Unsigned integer type

» 1— Two's complement sighed integer type
Arguments
Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_ORDER, H5T _GET_PAD, H5T _GET_PRECISION

H5T_GET_SIGN What's New in IDL 5.6

Chapter 3: New IDL Routines 307

H5T_GET_SIZE

The H5T_GET_SIZE function returns the size of a datatype in bytes.
Syntax

Result = H5T_GET_SIZE(Datatype _id)
Return Value

Returns an integer representing the datatype’s size.
Arguments

Datatype_id

An integer representing the datatype’sidentifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_CLASS, H5T_GET_SUPER

What's New in IDL 5.6 H5T_GET_SIZE

308 Chapter 3: New IDL Routines

H5T_GET_STRPAD

The H5T_GET_STRPAD function returns the padding method for a string datatype.
Syntax

Result = H5T_GET_STRPAD(Datatype_id)
Return Value

Returns a string containing the padding method. Possible values are:
e ‘NULLTERM’ — Null terminate (like C)
* ‘NULLPAD’ — Pad with zeroes
e 'SPACEPAD’ — Pad with spaces (like FORTRAN)
* ‘ERROR’

Arguments

Datatype_id

An integer representing the datatype’s identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_CSET, H5T_GET_SIZE

H5T_GET_STRPAD What's New in IDL 5.6

Chapter 3: New IDL Routines 309

H5T GET SUPER

The H5T_GET_SUPER function returns the base datatype from which a datatypeis
derived.

Syntax
Result = H5T_GET_SUPER(Datatype _id)
Return Value

Returns an integer representing the base datatype’s identifier number. This identifier
can be released with the HST_CL OSE.

Arguments
Datatype_id

An integer representing the datatype's identifier to be queried.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T_GET_CLASS, H5T_GET_SIZE

What's New in IDL 5.6 H5T_GET_SUPER

310 Chapter 3: New IDL Routines

H5T_IDLTYPE

The H5T_IDLTY PE function returns the IDL type code corresponding to a datatype.

Note
Thisfunction is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax

Result = H5T_IDLTY PE(Datatype_id
[, ARRAY_DIMENSIONS=variable][, STRUCTURE=variable])

Return Value

The Result is an integer giving the IDL type code.

Note
For alist of IDL type codes and their definitions, see “IDL Type Codes’ in the IDL
Reference Guide manual under the SIZE function.

Arguments
Datatype_id
An integer giving the datatype identifier for which to return the IDL type code.

Keywords

ARRAY_DIMENSIONS

Set this keyword to a named variable in which to return a vector containing the array
dimensions, if the datatype is an array. If the datatype is not an array, then a scalar
value of 0 isreturned.

STRUCTURE

Set this keyword to a named variable in which to return the IDL structure definition,
if the datatype is a compound datatype. If the datatype is not compound, then a scalar
value of 0 is returned.

H5T_IDLTYPE What's New in IDL 5.6

Chapter 3: New IDL Routines

Version History
Introduced 5.6
See Also

H5T_MEMTY PE

What's New in IDL 5.6

311

H5T_IDLTYPE

312 Chapter 3: New IDL Routines
H5T _MEMTYPE

The HST_MEMTY PE function returns the native memory datatype corresponding to
afile datatype.

Note

Thisfunction is not part of the standard HDF5 interface, but is provided as a
programming convenience.

Syntax
Result = H5T_MEMTY PE(Datatype _id)

Return Value

The Result is an integer giving the datatype identifier. If the file datatype is not
immutable, then the memory datatype identifier should be closed using
H5T_CLOSE.

Note

For alist of IDL type codes and their definitions, see “IDL Type Codes’ in the IDL
Reference Guide manual under the SIZE function.

Arguments
Datatype_id
An integer giving the file datatype identifier for which to return the memory datatype.

Keywords
None.
Version History
Introduced 5.6
See Also

H5T_IDLTYPE

H5T_MEMTYPE What's New in IDL 5.6

Chapter 3: New IDL Routines 313

H5T_OPEN

The H5T_OPEN function opens a named datatype.
Syntax

Result = H5T_OPEN(Loc_id, Name)
Return Value

Returns an integer representing the datatype’s identifier number. Thisidentifier can
be released with the HST_CLOSE.

Arguments
Loc_id
An integer representing the identifier of the file or group containing the datatype.

Name

A string representing the name of the datatype to be accessed.
Keywords

None.
Version History

Introduced 5.6
See Also

H5T _CLOSE

What's New in IDL 5.6 H5T_OPEN

314 Chapter 3: New IDL Routines

LA_CHOLDC

The LA_CHOLDC procedure computes the Cholesky factorization of an n-by-n
symmetric (or Hermitian) positive-definite array as:

If Aisrea: A= UTUorA=LLT
If Aiscomplex: A= UM UorA=LL"

where U and L are upper and lower triangular arrays. The T represents the transpose
while H represents the Hermitian, or transpose complex conjugate.

LA_CHOLDC isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float spotrf
Double dpotrf
Complex cpotrf
Double complex zpotrf

Table 3-7: LAPACK Routine Basis for LA CHOLDC

For more details, see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

LA_CHOLDC, Array [, /DOUBLE] [, STATUS=variable] [, /UPPER]
Arguments

Array
A named variable containing the real or complex array to be factorized. Only the
lower triangular portion of Array isused (or upper if the UPPER keyword is set).

This procedure returns Array as alower triangular array from the Cholesky
decomposition (upper triangular if the UPPER keyword is set).

LA_CHOLDC What's New in IDL 5.6

Chapter 3: New IDL Routines 315

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the defaultis DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

e STATUS = 0: The computation was successful.

» STATUS>0: The array is not positive definite and the factorization could not
be completed. The STATUS va ue specifies the order of the leading minor
which is not positive definite.

Note
If STATUS is not specified, any error messages will output to the screen.

UPPER

If this keyword is set, then only the upper triangular portion of Array is used, and the
upper triangular array is returned. The default isto use the lower triangular portion
and to return the lower triangular array.

Examples

The following example program computes the Cholesky decomposition of a given
symmetric positive-definite array:

PRO ExLA CHOLDC
Create a symmetric positive-definite array.

n =10
seed = 12321
array RANDOMJ(seed, n, n)

array array ## TRANSPOSE(Array)

Conput e the Chol esky deconposition.

| ower = array ; make a copy
LA _CHOLDC, | ower

What's New in IDL 5.6 LA_CHOLDC

316 Chapter 3: New IDL Routines

Zero out the upper triangular portion.
for i =0,n- 2 Do lower[i+1:*,i] =0

Reconstruct the array and check the difference
arecon = | ower ## TRANSPOSE(| ower)

PRI NT, 'LA CHOLDC Error:', MAX(ABS(arecon - array))
END

When this program is compiled and run, IDL prints:

LA CHOLDC Error:
4.76837e-007

Version History
Introduced 5.6
See Also

CHOLDC, LA_CHOLMPROVE, LA_CHOLSOL

LA_CHOLDC What's New in IDL 5.6

Chapter 3: New IDL Routines 317

LA_CHOLMPROVE

The LA_CHOLMPROVE function uses Cholesky factorization to improve the
solution to asystem of linear equations, AX = B (where Aissymmetric or Hermitian),
and provides optional error bounds and backward error estimates.

The LA_CHOLMPROVE function may al so be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, theresult is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_CHOLMPROVE is based on the following LAPACK routines:

Output Type LAPACK Routine
Float sporfs
Double dporfs
Complex cporfs
Double complex zporfs

Table 3-8: LAPACK Routine Basis for LA_ CHOLMPROVE

For more details, see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_CHOLMPROVE(Array, Achol, B, X

[, BACKWARD_ERROR=variable] [, /DOUBLE]

[, FORWARD ERROR=variable] [, /UPPER])
Return Value

The result is an n-element vector or k-by-n array.

Arguments

Array

The original n-by-n array of the linear system AX = B.

What's New in IDL 5.6 LA_CHOLMPROVE

318

Chapter 3: New IDL Routines

Achol

The n-by-n Cholesky factorization of Array, created by the LA_CHOLDC procedure.

An n-element input vector containing the right-hand side of the linear system, or ak-
by-n array, where each of the k columns represents a different linear system.

An n-element input vector, or ak-by-n array, containing the approximate solutions to
the linear system, created by the LA_CHOL SOL function.

Keywords
BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B isavector containing asingle linear system, then
BACKWARD_ERROR will be ascalar. If B isan array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the defaultis DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is a vector containing asingle linear system, then
FORWARD_ERROR will be ascaar. If Bisan array containing k linear systems,
then FORWARD_ERROR will be a k-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

UPPER

Set this keyword if A containsthe upper (rather than lower) triangular array.

LA_CHOLMPROVE What's New in IDL 5.6

Chapter 3: New IDL Routines 319

Note
If the UPPER keyword issetin LA_CHOLDC and LA_CHOLSOL then the
UPPER keyword must also be setin LA_CHOLMPROVE.

Examples

The following example program computes an improved solution to a set of 10
equations:

PRO ExLA CHOLMPROVE

; Create a symmetric positive-definite array.
n =10

seed = 12321

a = RANDOMJseed, n, n, /DOUBLE)

a a ## TRANSPOSE(a)

Create the right-hand side vector b:
b = RANDOMJ(seed, n, /DOUBLE)

; Conpute the Chol esky deconposition.
achol = a ; make a copy
LA CHOLDC, achol

; Conpute the first approxi mation to the solution:
x = LA CHOLSOL(achol, b)

; Inprove the solution and print the error estimate:
xnmprove = LA CHOLMPROVE(a, achol, b, x, $
FORWARD_ERROR = fError)
PRI NT, 'LA CHOLMPROVE error:', $
MAX(ABS(a ## xnprove - b))
PRI NT, 'LA CHOLMPROVE Error Estimate:', fError
END

When this program is compiled and run, IDL prints:

LA _CHOLMPROVE error: 3.9412917e-15
LA CHOLMPROVE error estinate: 5.1265892e-12

Version History
Introduced 5.6
See Also

LA_CHOLDC, LA_CHOLSOL

What's New in IDL 5.6 LA_CHOLMPROVE

320 Chapter 3: New IDL Routines

LA_CHOLSOL

The LA_CHOLSOL function isused in conjunction with the LA_CHOLDC to solve
aset of nlinear equationsin n unknowns, AX = B, where A must be a symmetric (or

Hermitian) positive-definite array. The parameter A is input not as the original array,
but as its Cholesky decomposition, created by the routine LA_CHOLDC.

The LA_CHOL SOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, theresult is ak-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_CHOLSOL is based on the following LAPACK routines:

Output Type LAPACK Routine
Float spotrs
Double dpotrs
Complex cpotrs
Double complex zpotrs

Table 3-9: LAPACK Routine Basis for LA_ CHOLSOL

For more details, see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax
Result = LA_CHOLSOL(A, B[, /DOUBLE] [, /UPPER])
Return Value
The result is an n-element vector or k-by-n array.
Arguments
A

The n-by-n Cholesky factorization of an array, created by the LA_CHOLDC
procedure.

LA_CHOLSOL What's New in IDL 5.6

Chapter 3: New IDL Routines 321

B

An n-element input vector containing the right-hand side of the linear system, or ak-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

UPPER

Set this keyword if A contains the upper triangular array, rather than the lower
triangular array.

Note
If the UPPER keyword is set inthe LA_CHOLDC then the UPPER keyword must

alsobesetin LA_CHOLSOL.

Examples

Given the following system of equations:
6u+ 15v+ 55w =95
15u + 55v + 225w =50
55u + 225v + 979w = 237
The solution can be derived by using the following program:

PRO ExLA CHOLSCL
Define the coefficient array:
a= [[6.0, 15.0, 55.0], $
[15.0, 55.0, 225.0], $
[55.0, 225.0, 979.0]]

Define the right-hand side vector b:
b =19.5 50.0, 237.0]

; Conpute the Chol esky deconposition of a:
achol = a ; make a copy

What's New in IDL 5.6 LA_CHOLSOL

322

LA CHOLDC, achol

Conpute and print the solution:
x = LA CHOLSOL(achol, b)
PRI NT, 'LA CHOLSOL solution:', x
END

When this program is compiled and run, IDL prints:

LA CHOLSOL Sol uti on:
- 0. 499999 -1. 00000 0. 500000

The exact solution vector is[-0.5, -1.0, 0.5].
Version History

Introduced 5.6
See Also

CHOLSOL, LA_CHOLDC, LA_CHOLMPROVE

LA_CHOLSOL

Chapter 3: New IDL Routines

What's New in IDL 5.6

Chapter 3: New IDL Routines 323

LA _DETERM

The LA_DETERM function uses LU decomposition to compute the determinant of a
square array.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
| a_det erm prointheli b subdirectory of the IDL distribution.

Syntax

Result = LA_DETERM(A [, /ICHECK] [, /DOUBLE] [, ZERO=value])
Return Value

Theresult isascalar of the same type as the input array.
Arguments

A

An n-by-n real or complex array.
Keywords
CHECK

Set thiskeyword to check A for any singularities. The determinant of asingular array
isreturned as zero if this keyword is set. Run-time errors may result if Aissingular
and this keyword is not set.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

What's New in IDL 5.6 LA DETERM

324 Chapter 3: New IDL Routines

ZERO

Use this keyword to set the absolute value of the floating-point zero. A floating-point
zero on the main diagona of atriangular array resultsin a zero determinant. For
single-precision inputs, the default value is 1.0 x 10°®. For double-precision inputs,
the default value is 1.0 x 1012, Setting this keyword to a value less than the default

may improve the precision of the result.

Examples

The following program computes the determinant of a square array:

PRO ExLA DETERM

Create a square array.

array =[[1d, 2, 1], $
[4, 10, 15], $
[3. 7, 1]]

Conput e the determ nant
adeterm = LA_DETERM ar r ay)
PRI NT, 'LA DETERM ', adeterm
END

When this program is compiled and run, IDL prints:

A_DETERM
-15. 000000

Version History
Introduced 5.6

See Also

DETERM, LA_LUDC

LA _DETERM What's New in IDL 5.6

Chapter 3: New IDL Routines 325

LA_EIGENPROBLEM

The LA_EIGENPROBLEM function uses the QR algorithm to compute all
eigenvalues A and eigenvectorsv # 0 of an n-by-n real nonsymmetric or complex
non-Hermitian array A, for the eigenproblem Av = Av. The routine can also compute
the left eigenvectors u # 0, which satisfy uHA = Au.

LA_EIGENPROBLEM may also be used for the generalized eigenproblem:
Av= ABv and u"A = Au"B

where A and B are square arrays, v are the right eigenvectors, and u are the | eft
eigenvectors.

LA_EIGENPROBLEM is based on the following LAPACK routines:

Output Type Standard I__APACK Generalized_
Routine LAPACK Routine
Float sgeevx sggevx
Double dgeevx dggevx
Complex cgeevx cggevx
Double complex zgeevx Zggevx

Table 3-10: LAPACK Routine Basis for LA EIGENPROBLEM
For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_EIGENPROBLEM(AT, B] [, ALPHA=variable] [, BALANCE=value]
[, BETA=variable] [, /DOUBLE] [, EIGENVECTORS=variable]

[, LEFT_EIGENVECTORS=variable] [, NORM_BALANCE = variable]

[, PERMUTE_RESULT=variable] [, SCALE_RESULT=variable]

[, RCOND_VALUE=variable] [, RCOND_VECTOR=variable]

[, STATUS=variableg])

Return Value

Theresult is a complex n-element vector containing the eigenvalues.

What's New in IDL 5.6 LA_EIGENPROBLEM

326 Chapter 3: New IDL Routines

Arguments

A
Thereal or complex array for which to compute eigenval ues and eigenvectors.
B

An optional real or complex n-by-n array used for the generalized eigenproblem. The
elements of B are converted to the same type as A before computation.

Keywords
ALPHA

For the generalized eigenproblem with the B argument, set this keyword to a named
variable in which the numerator of the eigenvalues will be returned as a complex n -
element vector. For the standard eigenproblem this keyword is ignored.

Tip
The ALPHA and BETA values are useful for eigenvalues which underflow or
overflow. In this case the eigenvalue problem may be rewritten as aAv = 3Bv.

BALANCE

Set this keyword to one of the following values:
* BALANCE =0: No balancing is applied to A.
BALANCE = 1: Both permutation and scale balancing are performed.

* BALANCE = 2: Permutations are performed to make the array more nearly
upper triangular.

* BALANCE = 3: Diagonally scale the array to make the columns and rows
more equal in norm.

The default isBALANCE = 1, which performs both permutation and scaling
balances. Balancing a nonsymmetric (or non-Hermitian) array is recommended to
reduce the sensitivity of eigenvalues to rounding errors.

LA_EIGENPROBLEM What's New in IDL 5.6

Chapter 3: New IDL Routines 327

BETA

For the generalized eigenproblem with the B argument, set this keyword to a named
variable in which the denominator of the eigenvalues will be returned asared or
complex n-element vector. For the standard eigenproblem this keyword isignored.
Tip
The ALPHA and BETA values are useful for eigenvalues which underflow or
overflow. In this case, the eigenvaue problem may be rewritten as aAv = 3Bv.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

EIGENVECTORS

Set this keyword to a named variable in which the eigenvectors will be returned as a
set of row vectors. If thisvariable is omitted then eigenvectors will not be computed
unlessthe RCOND_VALUE or RCOND_VECTOR keywords are present.

Note
For the standard eigenproblem the eigenvectors are normalized and rotated to have
norm 1 and largest component real. For the generalized eigenproblem the
eigenvectors are normalized so that the largest component has abs(real) +
abs(imaginary) = 1.

LEFT_EIGENVECTORS

Set this keyword to a named variable in which the left eigenvectors will be returned
as aset of row vectors. If this variable is omitted then left eigenvectors will not be
computed unless the RCOND_VALUE or RCOND_VECTOR keywords are present.

Note
Note - For the standard eigenproblem the eigenvectors are normalized and rotated
to have norm 1 and largest component real. For the generalized eigenproblem the
eigenvectors are normalized so that the largest component has abs(real) +
abs(imaginary) = 1.

What's New in IDL 5.6 LA_EIGENPROBLEM

328

Chapter 3: New IDL Routines

NORM_BALANCE

Set this keyword to a named variable in which the one-norm of the balanced matrix
will be returned. The one-norm is defined as the maximum value of the sum of
absolute values of the columns. For the standard eigenproblem, thiswill be returned
asascaar value; for the generalized eigenproblem this will be returned as a two-
element vector containing the A and B norms.

PERMUTE_RESULT

Set this keyword to a named variable in which the result for permutation balancing
will be returned as a two-element vector [ilo, ihi]. If permute balancing is not done
then the values will beilo=1and ihi = n.

RCOND_VALUE

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvalues will be returned as an n-element vector. If RCOND_VALUE is
present then left and right eigenvectors must be computed.

RCOND_VECTOR

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvectors will be returned as an n-element vector. If RCOND_VECTOR is
present then left and right eigenvectors must be computed.

SCALE_RESULT

Set this keyword to a named variable in which the results for permute and scale
balancing will be returned. For the standard eigenproblem, this will be returned as an
n-element vector. For the generalized eigenproblem, thiswill be returned as a n-by-2
array with the first row containing the permute and scale factors for the left side of A
and B and the second row containing the factors for the right side of A and B.

STATUS
Set this keyword to a named variable that will contain the status of the computation.
Possible values are:
e STATUS = 0: The computation was successful.

* STATUS> 0: The QR agorithm failed to compute all eigenvalues; no
eigenvectors or condition numbers were computed. The STATUS value
indicates that eigenvaluesilo: STATUS (starting at index 1) did not converge;
all other eigenvalues converged.

LA_EIGENPROBLEM What's New in IDL 5.6

Chapter 3: New IDL Routines 329

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

Find the eigenvalues and eigenvectors for an array using the following program:

PRO ExLA_ ElI GENPROBLEM

; Create a random array:

n =14

seed = 12321

array = RANDOWN(seed, n, n)

; Conpute all eigenval ues and ei genvectors:
ei genval ues = LA El GENPROBLEM array, $
El GENVECTORS = ei genvect ors)
PRI NT, 'LA_ElI GENPROBLEM Ei genval ues: "'
PRI NT, ei genval ues

; Check the results using the eigenvalue equation:
maxErr = 0d

FORi =0, n- 1 DO BEGN
; A*z = | anbda*z
al hs array ## eigenvectors[*,i]

ar hs ei genval ues[i]*ei genvectors[*,i]
maxErr = maxErr > MAX(ABS(al hs - arhs))
ENDFOR
PRI NT, 'LA ElI GENPROBLEM Error:', maxErr

; Now try the generalized eigenproblem

b = I DENTI TY(n) + 0.01* RANDOM\(seed, n, n)

ei genval ues = LA _El GENPROBLEM Array, B)

PRI NT, ' LA _ElI GENPROBLEM Gener al i zed Ei genval ues:'
PRI NT, ElI GENVALUES

END

When this program is compiled and run, IDL prints:

LA_El GENPROBLEM ei genval ues:

(-0. 593459, 0. 566318) (- 0. 593459, -0.566318)
(1.06216, 0. 00000) (1.61286, 0. 00000)
LA_El GENPROBLEM error: 4.0978193e- 07

LA_El CENPROBLEM general i zed ei genval ues:

(-0.574766, 0. 567452) (-0. 574766, -0.567452)
(1.57980, 0. 00000) (1.08711, 0. 00000)

What's New in IDL 5.6 LA_EIGENPROBLEM

330 Chapter 3: New IDL Routines

Version History
Introduced 5.6
See Also

LA_EIGENVEC, LA_ELMHES, LA_HQR

LA_EIGENPROBLEM What's New in IDL 5.6

Chapter 3: New IDL Routines 331

LA_EIGENQL

The LA_EIGENQL function computes selected eigenvalues A and eigenvectorsz# 0
of an n-by-n real symmetric or complex Hermitian array A, for the eigenproblem
Az= Az

LA_EIGENQL may also be used for the generalized symmetric eigenproblems:
Az=ABz or ABz=Az or BAz=Az

where A and B are symmetric (or Hermitian) and B is positive definite.

LA_EIGENQL isbased on the following LAPACK routines:

Output Type Eigsgsg?oak;?em Generalized
Float ssyevx, ssyevr, ssyevd Ssygvx, ssygvd
Double dsyevx, dsyevr, dsyevd dsygvx, dsygvd
Complex cheevx, cheevr, cheevd chegvx, chegvd
Double complex zheevx, zheevr, zheevd zhegvx, zhegvd

Table 3-11: LAPACK Routine Basis for LA_EIGENQL

For details see Anderson et a., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_EIGENQL(A[, B] [,/DOUBLE] [, EIGENVECTORS=variable]

[, FAILED=variable] [, GENERALIZED=value] [, METHOD=value]

[, RANGE=vector] [, SEARCH_RANGE=vector] [, STATUS=variabl€]

[, TOLERANCE=value])
Return Value

Theresult isareal vector containing the eigenvalues in ascending order.

What's New in IDL 5.6 LA_EIGENQL

332 Chapter 3: New IDL Routines

Arguments

A

Thereal or complex n-by-n array for which to compute eigenval ues and eigenvectors.
A must be symmetric (or Hermitian).

B

An optional real or complex n-by-n array used for the generalized eigenproblem. B
must be symmetric (or Hermitian) and positive definite. The elements of B are
converted to the same type as A before computation.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

EIGENVECTORS

Set this keyword to a named variable in which the eigenvectors will be returned as a
set of row vectors. If thisvariable is omitted then eigenvectors will not be computed.
All eigenvectors will be returned unless the RANGE or SEARCH_RANGE
keywords are used to restrict the eigenvalue range.

FAILED

Set this keyword to a named variable in which to return the indices of eigenvectors
that did not converge. This keyword is only available for METHOD = 0, and will be
ignored for other methods.

Note
Index numbers within FAILED start at 1.

GENERALIZED

For the generalized eigenproblem with the optional B argument, set this keyword to
indicate which problem to solve. Possible values are:

* GENERALIZED = 0 (the default): Solve Az= ABz.

LA_EIGENQL What's New in IDL 5.6

Chapter 3: New IDL Routines 333

e GENERALIZED = 1: Solve ABz = Az
» GENERALIZED =2: Solve BAz= Az
Thiskeyword isignored if argument B is not present.

METHOD

Set this keyword to indicate which computation method to use. Possible values are:

e METHOD = 0 (the default): Use tridiagonal decomposition to compute some
or al of the eigenvalues and (optionally) eigenvectors.

* METHOD = 1: Usethe Relatively Robust Representation (RRR) algorithm to
compute some or all of the eigenvalues and (optionally) eigenvectors. This
method is unavailable for the generalized eigenproblem with the optional B
argument, and will default to METHOD = 0.

Note
The RRR method may produce NaN and Infinity floating-point exception messages

during normal execution.

» METHOD = 2: Use adivide-and-conquer agorithm to compute all of the
eigenvalues and (optionally) all eigenvectors. This method is available for
either the standard or generalized eigenproblems. For METHOD = 2 the
RANGE, SEARCH_RANGE, and TOLERANCE keywords are ignored, and
all eigenvalues are returned.

RANGE

Set this keyword to a two-element vector containing the indices of the smallest and
largest eigenvalues to be returned. The default is [0, n-1], which returns al
eigenvalues and eigenvectors. This keyword isignored for METHOD = 2.

SEARCH_RANGE

Set this keyword to a two-element floating-point vector containing the lower and
upper bounds of the interval to be searched for eigenvalues. The default isto return
all eigenvalues and eigenvectors. This keyword isignored for METHOD = 2. If both
RANGE and SEARCH_RANGE are specified, only the SEARCH_RANGE values
are used.

Note
If the search range does not contain any eigenvalues, then Resullt,
EIGENVECTORS, and FAILED will each be set to ascalar zero.

What's New in IDL 5.6 LA_EIGENQL

334 Chapter 3: New IDL Routines

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Inal cases STATUS = 0 indicates successful computation. For the standard
eigenproblem, possible nonzero values are:

« METHOD =0, STATUS > 0: STATUS eigenvectors failed to converge. The
FAILED keyword contains the indices of the eigenvectors that did not
converge.

« METHOD =1, STATUS< 0 or STATUS > 0: Aninterna error occurred
during the computation.

* METHOD =2, STATUS > 0: STATUS off-diagonal elements of an
intermediate tridiagonal matrix did not converge to zero.

For the generalized eigenproblem, possible nonzero values are:

e METHOD =0, 0 < STATUS < n: STATUS eigenvectorsfailed to converge.
The FAILED keyword contains the indices of the eigenvectors that did not
converge.

e METHOD =0, STATUS > n: The factorization of B could not be completed
and the computation failed. The value of (STATUS - n) specifies the order of
the leading minor of B which is not positive definite.

* METHOD =2,0< STATUS < n: STATUS off-diagonal elements of an
intermediate tridiagonal matrix did not converge to zero.

e METHOD =2, STATUS > n: The factorization of B could not be completed
and the computation failed. The value of (STATUS - n) specifies the order of
the leading minor of B which is not positive definite.

Note
If STATUS is not specified, any error messages will be output to the screen.

TOLERANCE

Set this keyword to a scalar giving the absolute error tolerance for the eigenvalues
and eigenvectors. For the most accurate eigenvalues, TOLERANCE should be set to
2* XMIN, where XMIN is the magnitude of the smallest usable floating-point value.
For METHOD =0, if TOLERANCE is less than or equal to zero, or is unspecified,
then atolerance value of EPS*||T||; will be used, where T is the tridiagonal matrix
obtained from A. For METHOD =1, if TOLERANCE isless than or equal to
N*EPS*|[T||4, or is unspecified, then atolerance value of N* EPS*||T||, will be used.

LA_EIGENQL What's New in IDL 5.6

Chapter 3: New IDL Routines 335

For values of EPS and XMIN, see the MACHAR. This keyword isignored for

METHOD = 2.

Tip
If the LA_EIGENQL routine fails to converge, try setting the TOLERANCE to a
larger value.

Examples

Find the eigenvalues and eigenvectors for a symmetric array using the following
program:

PRO ExLA ElI GENQL
; Create a random symetric array:

n =10

seed = 12321

array = RANDOWN(seed, n, n)
array = array + TRANSPCSE(arr ay)

; Conpute all eigenval ues and ei genvectors:
ei genvalues = LA EIGENQ.(array, $
El GENVECTORS=ei genvect or s)

; Check the results using the eigenval ue equation:
maxErr = 0d
FOR i =0,n-1 DO BEG N

; a*z = | anbda*z

al hs = array ## eigenvectors[*,i]
arhs = ei genval ues[i]*ei genvectors[*,i]
maxErr = maxErr > MAX(ABS(al hs - arhs))
ENDFOR
PRI NT, 'LA EIGENQ error:', maxErr

; Conpute the three |largest eigenval ues:
ei genvalues = LA EIGENQ.(array, $
El GENVECTORS = ei genvectors, $
RANGE = [n-3,n-1])
PRI NT, 'LA _ElI GENQ. eigenval ues:', eigenval ues

; Now try the generalized eigenproblem

b = I DENTI TY(n) + 0.01* RANDOM\(seed, n, n)
; Make B symmetric and positive definite:
b = b ## TRANSPOSE(b)

What's New in IDL 5.6 LA_EIGENQL

336 Chapter 3: New IDL Routines

; Conpute the three largest generalized eigenval ues:
ei genval ues = LA EI GENQ.(array, b, RANGE=[n-3,n-1])
PRI NT, 'LA_ElI GENQL Generalized Ei genval ues:'

PRI NT, Ei genval ues

END

When this program is compiled and run, IDL prints:
LA _El GENQL error: 1. 3560057e- 06

LA _ElI GENQL ei genval ues: 3. 82993 4.69785 5. 61567
LA _ElI GENQL generalized eigenval ues:
3.83750 4.74803 5.57692

Version History
Introduced 5.6

See Also

EIGENQL, LA_TRIQL, LA_TRIRED

LA_EIGENQL What's New in IDL 5.6

Chapter 3: New IDL Routines 337

LA_EIGENVEC

The LA_EIGENVEC function uses the QR algorithm to compute all or some of the
eigenvectorsv # 0 of an n-by-n real nonsymmetric or complex non-Hermitian array
A, for the eigenproblem Av = Av. The routine can also compute the |eft eigenvectors
u # 0, which satisfy u"A = Au".

Note
The left and right eigenvectors returned by LA_EIGENVEC are normalized to
norm 1. Unlike the LA_EIGENPROBLEM, they are not rotated to have largest
component real. Therefore, you may notice slight differences in results between
LA _EIGENVEC and LA_EIGENPROBLEM.

LA_EIGENVEC is based on the following LAPACK routines:

Output Type Eigenvectors C,:\I?Jrr]:ki)téfsn BalIJanndcciJng
Float strevc strsna sgebak
Double dtrevc dtrsna dgebak
Complex ctrevc ctrsna cgebak
Double complex ztrevc ztrsna zgebak

Table 3-12: LAPACK Routine Basis for LA_EIGENVEC

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_EIGENVEC(T, QZ [, BALANCE=value] [, /DOUBLE]

[, EIGENINDEX=variable] [, LEFT_EIGENVECTORS=variabl€]

[, PERMUTE_RESULT=[ilo, ihi]] [, SCALE_RESULT=vector]

[, RCOND_VALUE=variable] [, RCOND_VECTOR=variable] [, SELECT=vector])

Return Value

Theresult isacomplex array containing the eigenvectors as a set of row vectors.

What's New in IDL 5.6 LA_EIGENVEC

338 Chapter 3: New IDL Routines

Arguments

T
The upper quasi-triangular array containing the Schur form, created by LA_HQR.

Qz

The array of Schur vectors, created by LA_HOQR.
Keywords

BALANCE

If balancing was applied in the call to LA_ELMHES, then set this keyword to the
same value that was used, in order to apply the backward ba ancing transform to the
eigenvectors. If BALANCE is not specified, then the default isBALANCE = 1.

Note
If BALANCE is not zero, then both PERMUTE_RESULT and SCALE_RESULT

must be supplied.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if T is double precision, otherwise the default is DOUBLE = 0.

EIGENINDEX

If keyword SELECT is used, then set this keyword to a named variable in which the
indices of the eigenvalues that correspond to the selected eigenvectors will be
returned. If the SELECT keyword is not used then EIGENINDEX will be set to
LINDGEN(n).

Tip
This keyword is most useful for real input arrays when the SELECT keyword is
present. In this case, avalue of SELECT]j] equal to 1 may produce two
eigenvectorsif the eigenvalueis part of a complex-conjugate pair.

LA_EIGENVEC What's New in IDL 5.6

Chapter 3: New IDL Routines 339

LEFT_EIGENVECTORS

Set this keyword to a named variable in which the |eft eigenvectors will be returned
as aset of row vectors. If this variable is omitted then left eigenvectors will not be
computed unless the RCOND_VALUE keyword is present.

PERMUTE_RESULT

Set this keyword to a two-element vector containing the [ilo, ihi] permutation results
from the LA_ELMHES procedure. This keyword must be present if BALANCE =1
or BALANCE = 2.

RCOND_VALUE

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvalues will be returned as an n-element vector. If RCOND_VALUE is
present then left and right eigenvectors must be computed.

RCOND_VECTOR

Set this keyword to a named variable in which the reciprocal condition numbers for
the eigenvectors will be returned as an n-element vector.

SCALE_RESULT

Set this keyword to an n-element vector containing the permute and scale balancing
results from the LA_ELMHES procedure. This keyword must be present if
BALANCE isnot zero.

SELECT

Set this keyword to an n-element vector of zeroes or ones that indicates which
eigenvectors to compute. There are two cases:

e Theoriginal array wasreal: If the j-th eigenvalue (as created by LA_HQR) is
real, then if SELECT(j] is set to 1, then the j-th eigenvector will be computed.
If the j-th and (j+1) eigenvalues form acomplex-conjugate pair, then if either
SELECT[j] or SELECT[j+1] is set to 1, then the complex-conjugate pair of j-
th and (j+1) eigenvectors will be computed.

» Theoriginal array was complex: If SELECT[j] is set to 1, then the j-th
eigenvector will be computed.

If SELECT is omitted then all eigenvectors are returned.

What's New in IDL 5.6 LA_EIGENVEC

340 Chapter 3: New IDL Routines

Examples

Compute the eigenval ues and sel ected eigenvectors of arandom array using the
following program:

PRO ExLA _El GENVEC

; Create a random array:

n =10

seed = 12321

array = RANDOWN(seed, n, n)

; Reduce to upper Hessenberg and conpute Q
H = LA ELMHES(array, q, $
PERMUTE_RESULT = pernute, SCALE _RESULT = scal e)

; Conpute eigenvalues, T, and QZ arrays:
ei genval ues = LA HQR(h, ¢q, PERMUTE_RESULT = per nute)

; Conpute eigenvectors corresponding to

; the first 3 eigenval ues.

select =[1, 1, 1, REPLICATE(O, n - 3)]

ei genvectors = LA EIGENVEC(H, Q $
El GENI NDEX = ei geni ndex, $
PERMUTE_RESULT = pernmute, SCALE RESULT = scale, $
SELECT = sel ect)

PRI NT, ' LA _ElI GENVEC ei genval ues:"'

PRI NT, ei genval ues][ei geni ndex]
END

When this program is compiled and run, IDL prints:

LA_ElI GENVEC ei genval ues:
(-0.278633, 2.55055) (-0.278633, -2.55055)
(2.31208, 0. 000000)

Version History
Introduced 5.6
See Also

EIGENVEC, LA_ELMHES, LA_HQR

LA_EIGENVEC What's New in IDL 5.6

Chapter 3: New IDL Routines 341

LA_ELMHES

The LA_ELMHES function reduces areal nonsymmetric or complex non-Hermitian
array to upper Hessenberg form H. If the array is real then the decomposition is
A=QH Q' where Qisorthogonal. If the array is complex Hermitian then the
decompositionis A = Q H Q", where Q is unitary. The superscript T represents the
transpose while superscript H represents the Hermitian, or transpose complex
conjugate.

LA_ELMHES s based on the following LAPACK routines:

Output Type Bgf;uccee& Norm Optional Q
Float sgebal, sgehrd slange sorghr
Double dgebal, dgehrd dlange dorghr
Complex cgebal, cgehrd clange cunghr
Double complex zgebal, zgehrd zlange zunghr

Table 3-13: LAPACK Routine Basis for LA_ELMHES

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_ELMHES(Array [, Q] [, BALANCE=value] [, /DOUBLE]

[, NORM_BALANCE=variable] [, PERMUTE_RESULT=variable]

[, SCALE_RESULT=variable])
Return Value

Theresult is an array of the same type as A containing the upper Hessenberg form.

The Hessenberg array is stored in the upper triangle and the first subdiagonal.

Elements bel ow the subdiagonal should be ignored but are not automatically set to
zero.

What's New in IDL 5.6 LA_ELMHES

342 Chapter 3: New IDL Routines

Arguments

Array

The n-by-n real or complex array to reduce to upper Hessenberg form.

Q

Set this optional argument to a named variable in which the array Q will be returned.
The Q argument may then be input into LA_HQR to compute the Schur vectors.

Keywords
BALANCE

Set this keyword to one of the following values:
* BALANCE =0: No balancing is applied to Array.
BALANCE = 1: Both permutation and scale balancing are performed.

* BALANCE = 2: Permutations are performed to make the array more nearly
upper triangular.

* BALANCE = 3: Diagonally scale the array to make the columns and rows
more equal in norm.

The default isBALANCE = 1, which performs both permutation and scaling
balances. Balancing a nonsymmetric array is recommended to reduce the sensitivity
of eigenvalues to rounding errors.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the defaultis DOUBLE = 0.

NORM_BALANCE

Set this keyword to a named variable in which the one-norm of the balanced matrix
will be returned. The one-norm is defined as the maximum val ue of the sum of
absolute values of the columns.

LA_ELMHES What's New in IDL 5.6

Chapter 3: New IDL Routines 343

PERMUTE_RESULT

Set this keyword to a named variable in which the result for permutation balancing
will be returned as a two-element vector [ilo, ihi]. If permute balancing is not done
then the values will beilo=1and ihi = n.

SCALE_RESULT

Set this keyword to a named variable in which the result for permute and scale
balancing will be returned as an n-element vector.

Examples

See LA_EIGENVEC for an example of using this procedure.
Version History

Introduced 5.6
See Also

ELMHES, LA_HQR

What's New in IDL 5.6 LA_ELMHES

344 Chapter 3: New IDL Routines

LA_GM_LINEAR_MODEL

TheLA_GM_LINEAR_MODEL function is used to solve a general Gauss-Markov
linear model problem:

minimize, ||y||> with constraint d = Ax + By

where A isan m-column by n-row array, B is a p-column by n-row array, and d isan
n-element input vector withm<n < m+p.

The following items should be noted:

* If Ahasfull columnrank mand the array (A B) hasfull row rank n, then there
isaunique solution x and a minimal 2-norm solution y.

» If Bissguare and nonsingular then the problem is equivalent to aweighted
linear |east-squares problem, minimize, ||B 1(Ax - d)||».

» If Bistheidentity matrix then the problem reduces to the ordinary linear least-
squares problem, minimize, ||Ax - d||,.

LA_GM_LINEAR_MODEL isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sggglm
Double dggglm
Complex cggglm
Double complex zggglm

Table 3-14: LAPACK Routine Basis for LA_ GM_LINEAR_MODEL

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_GM_LINEAR_MODEL(A, B, D, Y[, /DOUBLE])
Return Value

The result (x) is an m-element vector whose type isidentical to A.

LA_GM_LINEAR_MODEL What's New in IDL 5.6

Chapter 3: New IDL Routines 345

Arguments

A
The m-by-n array used in the constraint equation.
B
The p-by-n array used in the constraint equation.
D
An n-element input vector used in the constraint equation.

Y

Set this argument to a named variable, which will contain the p-element output
vector.

Keywords
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

Examples

Given the constraint equation d = Ax + By, (where A, B, and d are defined in the
program below) the following example program solves the general Gauss-Markov
problem:

PRO EXLA GM LI NEAR_MODEL
Define sonme exanpl e coefficient arrays:
a=1[[2 7, 4, $
[5, 1, 3], $
[3, 3, 6], $
[4, 5, 2]]
b=1[[-3 2], $
[1, 5], $
[2, 9], $
[4, 1]]

What's New in IDL 5.6 LA_GM_LINEAR_MODEL

346 Chapter 3: New IDL Routines

; Define a sanple |eft-hand side vector D:
d =1[-1, 2, -3, 4]

; Find and print the solution x:

X = LA GV LI NEAR_MODEL(a, b, d, y)

PRI NT, 'LA GM LI NEAR_ MODEL sol ution:"

PRI NT, X

PRI NT, 'LA _GM LI NEAR_MODEL 2-norm sol ution:'
PRI NT, Y

END

When this program is compiled and run, IDL prints:

LA _GM LI NEAR_MCODEL sol uti on:
1. 04668 0. 350346 -1.28445
LA _GM LI NEAR_MODEL 2-norm sol ution:
0.151716 0.0235733

Version History
Introduced 5.6
See Also

LA_LEAST SQUARE_EQUALITY, LA_LEAST_SQUARES

LA_GM_LINEAR_MODEL What's New in IDL 5.6

Chapter 3: New IDL Routines 347
LA_HOR

The LA_HQOR function uses the multishift QR agorithm to compute al eigenvalues
of an n-by-n upper Hessenberg array. The LA_ELMHES routine can be used to
reduce areal or complex array to upper Hessenberg form suitable for input to this
procedure. LA_HQR may also be used to compute the matrices T and QZ from the
Schur decomposition A= (Q2) T (Q2)".

LA_HQR isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float shseqr
Double dhseqr
Complex chseqr
Double complex zhseqr

Table 3-15: LAPACK Routine Basis for LA HOR

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.
Syntax

Result =LA_HQR(H [, Q] [, /DOUBLE] [, PERMUTE_RESULT=[ilo, ihi]]
[, STATUS=variableg])

Return Value
The result is an n-element complex vector.
Arguments
H

An n-by-n upper Hessenberg array, created by the LA_EL MHES procedure. If
argument Q is present, then on return H is replaced by the Schur form T. If argument
Q is not present then H is unchanged.

What's New in IDL 5.6 LA_HQR

348 Chapter 3: New IDL Routines

Q

Set this optional argument to the array Q created by the LA_ELMHES procedure. If
argument Q is present, then on return Q isreplaced by the Schur vectors QZ.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if H is double precision, otherwise the default is DOUBLE = 0.

PERMUTE_RESULT

Set this keyword to a two-element vector containing the [ilo, ihi] permutation results
from the LA_ELMHES procedure. The default is[1, n], indicating that permute
bal ancing was not done on H.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

e STATUS = 0: The computation was successful.

* STATUS> 0: The algorithm failed to find all eigenvaluesin 30* (ihi - ilo + 1)
iterations. The STATUS value indicates that eigenvaluesilo:STATUS (starting
at index 1) did not converge; al other eigenvalues converged.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples
See LA_EIGENVEC for an example of using this procedure.
Version History

Introduced 5.6

LA_HQR What's New in IDL 5.6

Chapter 3: New IDL Routines 349

See Also

HQOR, LA_EIGENVEC, LA_ELMHES

What's New in IDL 5.6 LA_HQR

350 Chapter 3: New IDL Routines

LA_INVERT

The LA_INVERT function uses LU decomposition to compute the inverse of a
square array.

LA_INVERT isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sgetrf, sgetri
Double dgetrf, dgetri
Complex cgetrf, cgetri
Double complex zgetrf, zgetri

Table 3-16: LAPACK Routine Basis for LA_INVERT

For more details, see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax
Result = LA_INVERT(A[,/DOUBLE] [, STATUS=variable])
Return Value
Theresult is an array of the same dimensions as the input array.
Arguments
A
The n-by-n array to be inverted.
Keywords
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

LA_INVERT What's New in IDL 5.6

Chapter 3: New IDL Routines 351

STATUS
Set this keyword to a named variable that will contain the status of the computation.
Possible values are:
e STATUS = 0: The computation was successful.

» STATUS> 0: Thearray issingular and theinverse could not be computed. The
STATUS value specifies which value along the diagonal (starting at one) is
zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

The following program computes the inverse of a square array:

PRO ExLA | NVERT
Create a square array.
array =[[1d, 2, 1], $
[4, 10, 15], $
[3, 7, 1]]
Conpute the inverse and check the error.
ainv = LA | NVERT(array)
PRI NT, 'LA I NVERT ldentity Matrix:'
PRI NT, ainv ## array
END

When this program is compiled and run, IDL prints:

A I NVERT ldentity Matrix:

1.0000000 1. 7763568e-015 6.6613381e-016
0.00000000 1. 0000000 1.2212453e- 015
0.00000000 0. 00000000 1.0000000

Version History
Introduced 5.6
See Also

INVERT, LA_LUDC

What's New in IDL 5.6 LA_INVERT

352 Chapter 3: New IDL Routines

LA_LEAST SQUARE_EQUALITY

The LA_LEAST_SQUARE_EQUALITY function is used to solvethe linear |east-
squares problem:

Minimize, ||Ax - c||, with constraint Bx = d

where A is an n-column by m-row array, B isan n-column by p-row array, cisan m-
element input vector, and d is an p-element input vector with p < n< m+p. If B has

A
full row rank p and the array (B> has full column rank n, then aunique solution
exists.

LA_LEAST_SQUARE_EQUALITY isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sgglse
Double dgglse
Complex cgglse
Double complex zgglse

Table 3-17: LAPACK Routine Basis for LA LEAST_SQUARE_EQUALITY

For details see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_LEAST_SQUARE_EQUALITY(A, B, C, D [,/DOUBLE]
[, RESIDUAL=variable])

Return Value
The result (X) is an n-element vector.
Arguments
A

The n-by-m array used in the least-squares minimization.

LA_LEAST_SQUARE_EQUALITY What's New in IDL 5.6

Chapter 3: New IDL Routines 353

B
The n-by-p array used in the equality constraint.
C
An m-element input vector containing the right-hand side of the |east-sguares system.
D
A p-element input vector containing the right-hand side of the equality constraint.
Keywords
DOUBLE
Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Aisdouble precision, otherwise the default is DOUBLE = 0.
RESIDUAL
Set this keyword to a named variable in which to return a scalar giving the residual
sum-of-squares for Result. If n = m + p then RESIDUAL will be zero.
Examples
Given the following system of equations:
2t + 5u + 3v + 4w = 9
7t + u+ 3v + 5w=1
4t + 3u + 6V + 2w = 2
with constraints,
-3t + u+ 2v + 4w = -4
2t + 5u + 9v + 1w = 4

find the solution using the following program:

PRO ExLA LEAST SQUARE EQUALI TY
Define the coefficient array:

a=1[[2, 5 3, 4], $
[7, 1, 3, 5], $
[4, 3, 6, 2]]

What's New in IDL 5.6 LA_LEAST_SQUARE_EQUALITY

354 Chapter 3: New IDL Routines

; Define the constraint array:
b=1[[-3 1, 2, 4, $
[2, 5, 9, 1]]

; Define the right-hand side vector c:
c =19 1, 2]

; Define the constraint right-hand side d:
d =[-4, 4]

; Find and print the mnimm norm sol ution of a:
x = LA _LEAST _SQUARE_EQUALI TY(a, b, ¢, d)

PRI NT, 'LA LEAST SQUARE_EQUALI TY sol ution:'

PRI NT, x
END

When this program is compiled and run, IDL prints:
LA LEAST_SQUARE_EQUALI TY sol uti on:

0. 651349 2.72695 -1.14638 -0. 620036
Version History
Introduced 5.6
See Also

LA_GM_LINEAR_MODEL, LA_LEAST_SQUARES

LA_LEAST_SQUARE_EQUALITY What's New in IDL 5.6

Chapter 3: New IDL Routines

LA_LEAST SQUARES

355

The LA_LEAST_SQUARES function is used to solve the linear least-squares

problem:
Minimize, ||Ax - b||,

where A isa (possibly rank-deficient) n-column by m-row array, b isan m-element
input vector, and x is the n-element solution vector. There are three possible cases:

* If m=nandtherank of Aisn, thenthe systemisoverdetermined and a unique
solution may be found, known as the | east-squares solution.

* If m<nandtherank of Aism, then the system is under determined and an
infinite number of solutions satisfy Ax - b = 0. In this case, the solution is
found which minimizes ||x||», known as the minimum norm solution.

» If Aisrank deficient, such that the rank of Aislessthan MIN(m, n), then the
solution is found which minimizes both ||Ax - b||, and ||X||5, known as the
minimum-norm least-squares solution.

TheLA_LEAST_SQUARES function may a so be used to solve for multiple systems
of least squares, with each column of b representing a different set of equations. In
this case, the result is a k-by-n array where each of the k columns represents the

solution vector for that set of equations.

LA_LEAST_SQUARES s based on the following LAPACK routines:

Output Type

LAPACK Routines

Float

sgels, sgelsy, sgelss, sgelsd

Double

dgels, dgelsy, dgelss, dgeld

Complex

cgels, cgelsy, cgelss, cgelsd

Double complex

zgdls, zgelsy, zgelss, zgelsd

Table 3-18: LAPACK Routine Basis for LA LEAST_SQUARES

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.

What's New in IDL 5.6

LA_LEAST_SQUARES

356 Chapter 3: New IDL Routines

Syntax

Result = LA_LEAST_SQUARES(A, B[, /DOUBLE] [, METHOD=value]
[, RANK=variable] [, RCONDITION=value] [, RESIDUAL=variable]
[, STATUS=variableg])

Return Value
The result is an n-element vector or k-by-n array.
Arguments

A
The n-by-m array used in the | east-squares system.
B

An m-element input vector containing the right-hand side of the linear |east-squares
system, or a k-by-m array, where each of the k columns represents a different least-
squares system.

Keywords
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the default is DOUBLE = 0.

METHOD

Set this keyword to indicate which computation method to use. Possible values are:

* METHOD =0 (the default): Assume that array A has full rank equal to
min(m, n). If m> n, find the | east-squares solution to the overdetermined
system. If m < n, find the minimum norm solution to the under determined
system. Both cases use QR or LQ factorization of A.

e METHOD = 1: Assumethat array A may be rank deficient; use a complete
orthogonal factorization of A to find the minimum norm |east-squares sol ution.

LA LEAST_SQUARES What's New in IDL 5.6

Chapter 3: New IDL Routines 357

» METHOD = 2: Assume that array A may be rank deficient; use singular value
decomposition (SV D) to find the minimum norm least-squares solution.

* METHOD = 3: Assume that array A may be rank deficient; use SVD with a
divide-and-conquer algorithm to find the minimum norm least-squares
solution. The divide-and-conquer method is faster than regular SV D, but may
require more memory.

RANK

Set this keyword to a named variable in which to return the effective rank of A. If
METHOD = 0 or the array is full rank, then RANK will have the value MIN(m, n).

RCONDITION

Set this keyword to the reciprocal condition number used as a cutoff valuein
determining the effective rank of A. Arrayswith condition numbers larger than
1/RCONDITION are assumed to be rank deficient. If RCONDITION is set to zero or
omitted, then array A isassumed to be of full rank. This keyword isignored for
METHOD =0.

RESIDUAL

If m> n and the rank of Aisn (the system is overdetermined), then set this keyword
to a named variable in which to return the residual sum-of-squares for Result. If B is
an m-element vector then RESIDUAL will be ascalar; if B isak-by-marray then
RESIDUAL will be ak-element vector containing the residual sum-of-squares for
each system of equations. If m<nor Aisrank deficient (rank < n) then the valuesin
RESIDUAL will be zero.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

e STATUS = 0: The computation was successful.

e STATUS>0: For METHOD=2 or METHOD=3, thisindicates that the SVD
algorithm failed to converge, and STATUS off-diagonal elements of an
intermediate bidiagonal form did not converge to zero. For METHOD=0 or
METHOD=1 the STATUS will always be zero.

What's New in IDL 5.6 LA LEAST SQUARES

358 Chapter 3: New IDL Routines

Examples
Given the following under determined system of equations:
2t + 5u + 3v + 4w = 3
7t + u+ 3v + 5w=1
4t + 3u + 6v + 2w = 6

The following program can be used to find the solution:

PRO EXLA LEAST_SQUARES
Define the coefficient array:

a=1[[2 5 3, 4, %
[7, 1, 3, 5], $
[4, 3, 6, 2]]

Define the right-hand side vector b:
b =13 1, 6]

Find and print the mninmm norm solution of a:
X = LA _LEAST_SQUARES(a, b)

PRI NT, ' LA LEAST_SQUARES solution:', X
END

When this program is compiled and run, IDL prints:

LA LEAST_SQUARES sol ution:
-0. 0376844 0. 350628 0.986164 - 0. 409066

Version History
Introduced 5.6

See Also

LA_GM_LINEAR_MODEL, LA_LEAST SQUARE_EQUALITY

LA LEAST_SQUARES What's New in IDL 5.6

Chapter 3: New IDL Routines 359

LA_LINEAR_EQUATION

The LA_LINEAR_EQUATION function uses LU decomposition to solve a system
of linear equations, AX = B, and provides optional error bounds and backward error
estimates.

The LA_LINEAR_EQUATION function may also be used to solve for multiple
systems of linear equations, with each column of B representing a different set of
equations. In this case, the result is a k-by-n array where each of the k columns
represents the solution vector for that set of equations.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
la_l i near _equati on. prointhel i b subdirectory of the IDL distribution.

Syntax

Result = LA_LINEAR_EQUATION(Array, B [, BACKWARD_ERROR=variable]
[,/DOUBLE] [, FORWARD_ERROR=variable] [, STATUS=variable])

Return Value
The result is an n-element vector or k-by-n array.
Arguments

Array

The n-by-n array of the linear system AX = B.
B

An n-element input vector containing the right-hand side of the linear system, or ak-
by-n array, where each of the k columns represents a different linear system.

What's New in IDL 5.6 LA_LINEAR_EQUATION

360 Chapter 3: New IDL Routines

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B isavector containing asingle linear system, then
BACKWARD_ERROR will be ascalar. If B isan array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is avector containing asingle linear system, then
FORWARD_ERROR will be ascaar. If Bisan array containing k linear systems,
then FORWARD_ERROR will be ak-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

e STATUS = 0: The computation was successful.

» STATUS > 0: The computation failed because one of the diagonal elements of
the LU decomposition is zero. The STATUS val ue specifies which value along
the diagonal (starting at one) is zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

LA_LINEAR_EQUATION What's New in IDL 5.6

Chapter 3: New IDL Routines 361

Examples
Given the system of eguations:
4u + 16000v + 17000w = 100.1
2u + 5v + 8w = 0.1
3u + 6v + 10w = 0.01

The following program can be used to find the solution:

PRO ExLA LI NEAR_EQUATI ON
Define the coefficient array:
a =[[4, 16000, 17000], $
[2, 5, 8], $
[3, 6, 10]]

Define the right-hand side vector b:
b =[100.1, 0.1, 0.01]

Conpute and print the solution to ax=b:
x = LA_LI NEAR_EQUATI ON(a, b)
PRI NT, 'LA LI NEAR_EQUATI ON solution:', X
end

When this program is compiled and run, IDL prints:

LA LI NEAR_EQUATI ON sol uti on:
-0. 397432 - 0. 334865 0.321148

The exact solution to 6 decimal placesis[-0.397432, -0.334865, 0.321149].
Version History

Introduced 5.6
See Also

LA_LUDC, LA_LUMPROVE, LA_LUSOL

What's New in IDL 5.6 LA_LINEAR_EQUATION

362 Chapter 3: New IDL Routines

LA_LUDC

The LA_LUDC procedure computes the LU decomposition of an n-column by m-
row array as.

A=PLU

where P is a permutation matrix, L is lower trapezoidal with unit diagonal elements
(lower triangular if n=m), and U is upper trapezoidal (upper triangular if n = m).

LA_LUDC isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sgetrf
Double dgetrf
Complex cgetrf
Double complex zgetrf

Table 3-19: LAPACK Routine Basis for LA_LUDC

For details see Anderson et a., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

LA_LUDC, Array, Index [, /IDOUBLE] [, STATUS=variable]
Arguments

Array

A named variable containing the real or complex array to decompose. This procedure
returns Array asits LU decomposition.

Index
An output vector with MIN(m, n) elements that records the row permutations which

occurred as aresult of partial pivoting. For 1 <j < MIN(m,n), row j of the matrix was
interchanged with row Index(j].

LA_LUDC What's New in IDL 5.6

Chapter 3: New IDL Routines 363

Note
Row numbers within Index start at one rather than zero.

Keywords
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the defaultis DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:
e STATUS = 0: The computation was successful.

» STATUS > 0: One of the diagonal elements of U iszero. The STATUS value
specifies which value along the diagona (starting at one) is zero.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

The following example uses the LU decompoasition on a given array, then determines
the residua error of using the resulting lower and upper arrays to recompute the
origina array:

PRO ExLA LUDC

Create a random array:

n = 20

seed = 12321

array = RANDOWN(seed, n, n)

Conpute LU deconposition.

aludc = array ; make a copy
LA _LUDC, aludc, index

What's New in IDL 5.6 LA_LUDC

364 Chapter 3: New IDL Routines

; Extract the lower and upper triangular arrays.
| = | DENTI TY(n)

u = FLTARR(n, n)

FORj =1,n- 1 DOI[0:j-1,j] = aludc[0:j-1,]]
FOR j=0,n - 1 DO wu[j:*,j] = aludc[j:*,j]

; Reconstruct array, but with rows pernuted.

arecon = | ## u
; Adj ust from LAPACK back to |DL indexing.
Index = Index - 1

; Permute the array rows back into correct order.
; Note that we need to loop in reverse order.
FORi =n- 1,0,-1 DOBEGN & $

tenp = arecon[*,i]

arecon[*, i] = arecon[*,index[i]]

arecon[*, index[i]] = tenp
ENDFOR
PRI NT, '"LA LUDC Error:', MAX(ABS(arecon - array))
END

When this program is compiled and run, IDL prints:
LA LUDC error: 4.76837e-007

Version History
Introduced 5.6
See Also

LA_LUMPROVE, LA_LUSOL, LUDC

LA_LUDC What's New in IDL 5.6

Chapter 3: New IDL Routines 365

LA _LUMPROVE

The LA_LUMPROVE function uses LU decomposition to improve the solution to a

system of linear equations, AX = B, and provides optional error bounds and backward
error estimates.

The LA_LUMPROVE function may also be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, the result is a k-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_LUMPROVE is based on the following LAPACK routines:

Output Type LAPACK Routine
Float sgerfs
Double dgetrfs
Complex cgetrfs
Double complex zgetrfs

Table 3-20: LAPACK Routine Basis for LA_ LUMPROVE

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.

Syntax
Result = LA_LUMPROVE(Array, Aludc, Index, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD_ERROR=variable])
Return Value
The result is an n-element vector or k-by-n array.

Arguments

Array

The original n-by-n array of the linear system.

What's New in IDL 5.6 LA_LUMPROVE

366 Chapter 3: New IDL Routines

Aludc

The n-by-n LU decomposition of Array, created by the LA_LUDC procedure.

Index

An n-element input vector, created by the LA_LUDC procedure, containing the row
permutations which occurred as aresult of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or ak-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or ak-by-n array, containing the approximate solutions to
the linear system, created by the LA_LUSOL function.

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B isavector containing asingle linear system, then
BACKWARD_ERROR will be ascalar. If B isan array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the defaultis DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is avector containing asingle linear system, then
FORWARD_ERROR will be ascaar. If Bisan array containing k linear systems,
then FORWARD_ERROR will be ak-element vector. For each linear system, if Xtrue
is the true solution corresponding to X, then the forward error is an estimated upper

LA_LUMPROVE What's New in IDL 5.6

Chapter 3: New IDL Routines 367

bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

Examples

The solution to agiven system of equations can be derived and improved by using the
following program:

PRO ExLA LUMPROVE
Define the coefficient array:
a= [[4, 16000, 17000], $
[2, 5, 8], $
[3, 6, 10]]
Conpute the LU deconposition:
aludc = a
make a copy
LA _LUDC, aludc, index

Define the right-hand side vector B:
b =[100.1, 0.1, 0.01]

Find the solution to Ax=b:
x = LA LUSQOL(al udc, index, b)
PRI NT, 'LA LUSOL Solution:', x

| nprove the sol ution:
xnew = LA LUMPROVE(a, al udc, index, b, x)
PRI NT, 'LA LUMPROVE Sol ution:', xnew
END

When this program is compiled and run, IDL prints:
LA LUSOL Sol ution:

-0. 397355 -0. 334742 0. 321033
LA _LUMPROVE Sol uti on:
-0.397432 - 0. 334865 0.321148

The exact solution to 6 decimal placesis[-0.397432, -0.334865, 0.321149].
Version History
Introduced 5.6

See Also

LA_LUDC, LA_LUSOL, LUMPROVE

What's New in IDL 5.6 LA_LUMPROVE

368 Chapter 3: New IDL Routines

LA_LUSOL

The LA_LUSOL function is used in conjunction with the LA_LUDC procedure to
solve a set of n linear equationsin n unknowns, AX = B. The parameter A is not the
original array, but its LU decomposition, created by the routine LA_LUDC.

The LA_LUSOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, theresult is ak-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_LUSOL isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sgetrs
Double dgetrs
Complex cgetrs
Double complex zgetrs

Table 3-21: LAPACK Routine Basis for LA_LUSOL

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax
Result = LA_LUSOL(A, Index, B[, /DOUBLE])
Return Value
The result is an n-element vector or k-by-n array.
Arguments
A

The n-by-n LU decomposition of an array, created by the LA_LUDC procedure.

Note
LA_LUSOL cannot accept any non-square output generated by LA_LUDC.

LA_LUSOL What's New in IDL 5.6

Chapter 3: New IDL Routines 369

Index

An n-element input vector, created by the LA_LUDC procedure, containing the row
permutations which occurred as aresult of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if A isdouble precision, otherwise the defaultis DOUBLE = 0.

Examples

Given the system of eguations:

4u + 16000v + 17000w = 100.1
2u + 5v + 8w 0.1
3u + 6v + 10w 0.01

find the solution can be derived by using the following program:

PRO ExLA LUSCOL
Define the coefficient array:

a = [[4, 16000, 17000], $
[2, 5, 8], $
[3, 6, 10]]
Conpute the LU deconposition:
aludc = a

make a copy
LA _LUDC, aludc, index

Define the right-hand side vector B:
b =[100.1, 0.1, 0.01]

Conpute and print the solution to Ax=b:
x = LA LUSOL(al udc, index, b)
PRI NT, 'LA LUSOL Solution:', x
END

What's New in IDL 5.6 LA_LUSOL

370 Chapter 3: New IDL Routines

When this program is compiled and run, IDL prints:

LA LUSOL sol ution: -0.397355 -0.334742 0.321033
The exact solution to 6 decimal placesis[-0.397432, -0.334865, 0.321149].
Note

UNIX users may see slightly different output results.

Version History
Introduced 5.6
See Also

LA_LINEAR_EQUATION, LA_LUDC, LA_LUMPROVE, LUSOL

LA_LUSOL What's New in IDL 5.6

Chapter 3: New IDL Routines 371

LA_SVD

The LA_SVD procedure computes the singular value decomposition (SVD) of an n-
columns by m-row array as the product of orthogonal and diagonal arrays:

Aisreal: A=U SV
Aiscomplex: A=U SV

where U is an orthogonal array containing the left singular vectors, Sis a diagonal
array containing the singular values, and V is an orthogonal array containing the right
singular vectors. The superscript T represents the transpose while the superscript H
represents the Hermitian, or transpose complex conjugate.

If n < mthen U has dimensions (n x m), Shas dimensions (n x n), and V! has
dimensions (n x n). If n = mthen U has dimensions (m x m), Shas dimensions
(mx m), and V! has dimensions (n x m). The following diagram shows the array
dimensions:

LA_SVD isbased on the following LAPACK routines:

LAPACK Routine
Output Type
QR lteration Divide-and-conquer
Float sgesvd sgesdd
Double dgesvd dgesdd
Complex cgesvd cgesdd
Double complex zgesvd zgesdd

Table 3-22: LAPACK Routine Basis for LA_SVD

What's New in IDL 5.6 LA_SVD

372 Chapter 3: New IDL Routines

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.

Syntax

LA_SVD, Array, W, U, V [, /DOUBLE] [, /DIVIDE_CONQUER]
[, STATUS=variabl€]

Arguments

Array
Thereal or complex array to decompose.

w

On output, Wis avector with MIN(m, n) elements containing the singular values.

U
On output, U is an orthogonal array with MIN(m, n) columns and mrows used in the
decomposition of Array. If Array iscomplex then U will be complex, otherwise U
will bereal.

\Y
On output, V is an orthogonal array with MIN(m, n) columns and n rows used in the
decomposition of Array. If Array iscomplex then V will be complex, otherwise V
will bereal.
Note

To reconstruct Array, you will need to take the transpose or Hermitian of V.
Keywords

DIVIDE_CONQUER

If this keyword is set, then the divide-and-conquer method is used to compute the
singular vectors, otherwise, QR iteration is used. The divide-and-conquer method is
faster at computing singular vectors of large matrices, but uses more memory and
may produce less accurate singular values.

LA_SVD What's New in IDL 5.6

Chapter 3: New IDL Routines 373

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if Array is double precision, otherwise the defaultis DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:
e STATUS = 0: The computation was successful.

» STATUS> 0: The computation did not converge. The STATUS value specifies
how many superdiagonals did not converge to zero.

Note
If STATUS is not specified, any error messages will output to the screen.

Examples

Construct a sample input array A, consisting of smoothed random values:

PRO ExLA_SVD
Create a snoot hed random array:
n = 100
m = 200
seed = 12321
a = SMOOTH(RANDOWMN(seed, n, m /DOUBLE), 5)

Conpute the SVD and check reconstruction error:
LA SVD, a, w, u, Vv
arecon = u ## DI AG_MATRI X(w) ## TRANSPOSE(V)
PRI NT, 'LA SVD error:', MAX(ABS(arecon - a))

Keep only the 15 | argest singul ar val ues
wiiltered = w
wiiltered[15:*] = 0.0
Reconstruct the array:
afiltered = u ## DI AG_ MATRI X(wfiltered) ## TRANSPOSE(V)
per cent Var = 100*(w*2)/ TOTAL(wW'2)
PRI NT, 'LA_SVD Variance:', TOTAL(percentVar[O0: 14])
END

What's New in IDL 5.6 LA_SVD

374 Chapter 3: New IDL Routines

When this program is compiled and run, IDL prints:
LA _SVD error: 1.0103030e-014
LA _SVD vari ance: 82.802816

Note
M ore than 80% of the variance is contained in the 15 largest singular values.

Version History
Introduced 5.6
See Also

LA_CHOLDC, LA_LUDC, SvDC

LA_SVD What's New in IDL 5.6

Chapter 3: New IDL Routines 375

LA_TRIDC

The LA_TRIDC procedure computes the LU decomposition of atridiagonal (n x n)
array as Array = L U, where L isaproduct of permutation and unit lower bidiagonal
arrays, and U is upper triangular with nonzero elements only in the main diagonal and
the first two superdiagonals.

LA_TRIDC isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sottrf
Double dattrf
Complex cgttrf
Double complex zgttrf

Table 3-23: LAPACK Routine Basis for LA_TRIDC

For more details, see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax
LA_TRIDC, AL, A, AU, U2, Index [, /DOUBLE] [, STATUS=variable]

Arguments

AL

A named vector of length (n - 1) containing the subdiagonal elements of an array.
This procedure returns AL as the (n - 1) elements of the lower bidiagona array from
the LU decomposition.

A

A named vector of length n containing the main diagonal elements of an array. This
procedure returns A as the n diagonal elements of the upper array from the LU
decomposition.

What's New in IDL 5.6 LA_TRIDC

376 Chapter 3: New IDL Routines

AU

A named vector of length (n - 1) containing the superdiagonal elements of an array.
This procedure returns AU as the (n - 1) superdiagona elements of the upper array.

U2

An output vector that contains the (n - 2) elements of the second superdiagonal of the
upper array.

Index

An output vector that records the row permutations which occurred as a result of
partial pivoting. For 1 <j <n, row j of the matrix was interchanged with row Index[j].

Note
Row numbers within Index start at one rather than zero.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if AL is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:
e STATUS = 0: The computation was successful.

» STATUS > 0: One of the diagonal elements of U iszero. The STATUS value
specifies which value along the diagona (starting at one) is zero.

Note
If STATUS is not specified, any error messages will output to the screen.

LA_TRIDC What's New in IDL 5.6

Chapter 3: New IDL Routines

Examples

Create atest program to compute the LU decomposition of atridiagonal array:

pro

end

What's New in IDL 5.6

EX_LA_TRI DC
; Create a randomtridi agonal array.
=9

=]

= 12321

RANDOWN(seed, n-1)
RANDOWN(seed, n)
RANDOWN(seed, n-1)

>> >0
T Fo
In mn 1 <

; Construct tridiagonal array.
Array = DI AG MATRI X(AL, -1) + DIAG MATRI X(A) + $
DI AG_MATRI X(AU, 1)

; Conpute the LU deconposition.
LA TRIDC, AL, A AU, U2, Index

; Adjust from LAPACK back to IDL indexing.
Index = Index - 1

; Create upper and | ower arrays.
Upper = DI AG MATRI X(A) + $

DI AG_MATRI X(AU, 1) + DI AG MATRI X(U2, 2)
Lower = DI AG MATRI X(AL, -1) + | DENTITY(n)

; To conserve storage, LA TRIDC keeps all |ower diagonal
; elements in AL, regardl ess of row The Index array
; tells which subdiagonals need to be shifted down.
; Loop starts at 1 since there aren't any subdi agonal s
; tothe left of the first diagonal element.
for i = 1,n-2 do begin
if (Index[i] ne i) then $

Lower[O:i-1,[i,i+1]] = Lower[O:i-1,[i+1,i]]

endf or

; Pernute the row order.
for i =n-2, 0, -1 do begin
if (Index[i] ne i) then $
Lower[*,[i,i+1]] = Lower[*,[i+1,i]]
endf or

; Reconstruct the array and check the difference:
Arecon = Lower ## Upper
print, 'LA TRIDC error:', MAX(ABS(Arecon - Array))

377

LA_TRIDC

378 Chapter 3: New IDL Routines

When this program is compiled and run, IDL prints:
LA TRIDC error: 1.50427e-008

Version History
Introduced 5.6
See Also

LA_TRIMPROVE, LA_TRISOL

LA_TRIDC What's New in IDL 5.6

Chapter 3: New IDL Routines 379

LA_TRIMPROVE

The LA_TRIMPROVE function improves the solution to a system of linear

equations with atridiagona array, AX = B, and provides optional error bounds and
backward error estimates.

The LA_TRIMPROVE function may a so be used to improve the solutions for
multiple systems of linear equations, with each column of B representing a different
set of equations. In this case, theresult is ak-by-n array where each of the k columns
represents the improved solution vector for that set of equations.

LA_TRIMPROVE is based on the following LAPACK routines:

Output Type LAPACK Routine
Float sgtrfs
Double dgtrfs
Complex catrfs
Double complex zgtrfs

Table 3-24: LAPACK Routine Basis for LA_ TRIMPROVE
For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax
Result = LA_TRIMPROVE(AL, A, AU, DAL, DA, DAU, DU2, Index, B, X
[, BACKWARD_ERROR=variable] [, /DOUBLE]
[, FORWARD ERROR=variable])
Return Value
The result is an n-element vector or k-by-n array.

Arguments
AL

A vector of length (n - 1) containing the subdiagonal elements of the original array.

What's New in IDL 5.6 LA_TRIMPROVE

380

Chapter 3: New IDL Routines

A

A vector of length n containing the main diagona elements of the original array.
AU

A vector of length (n - 1) containing the superdiagona elements of the original array.

DAL

The (n - 1) elements of the lower bidiagonal array, created by the LA_TRIDC
procedure.

DA

The n diagona elements of the upper triangular array, created by the LA_TRIDC
procedure.

DAU

The (n - 1) superdiagonal elements of the upper triangular array, created by the
LA_TRIDC procedure.

DU2

The (n - 2) elements of the second superdiagonal of the upper triangular array, created
by the LA_TRIDC procedure.

Index

An input vector, created by the LA_TRIDC procedure, containing the row
permutations which occurred as aresult of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or ak-
by-n array, where each of the k columns represents a different linear system.

X

An n-element input vector, or ak-by-n array, containing the approximate solutions to
the linear system, created by the LA_TRISOL function.

LA_TRIMPROVE What's New in IDL 5.6

Chapter 3: New IDL Routines 381

Keywords

BACKWARD_ERROR

Set this keyword to a named variable that will contain the relative backward error
estimate for each linear system. If B isavector containing asinglelinear system, then
BACKWARD_ERROR will be ascalar. If B isan array containing k linear systems,
then BACKWARD_ERROR will be a k-element vector. The backward error is the
smallest relative change in any element of A or B that makes X an exact solution.

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if AL isdouble precision, otherwise the default is DOUBLE = 0.

FORWARD_ERROR

Set this keyword to a named variable that will contain the estimated forward error
bound for each linear system. If B is avector containing asingle linear system, then
FORWARD_ERROR will be ascaar. If Bisan array containing k linear systems,
then FORWARD_ERROR will be ak-element vector. For each linear system, if Xtrue
isthe true solution corresponding to X, then the forward error is an estimated upper
bound for the magnitude of the largest element in (X - Xtrue) divided by the
magnitude of the largest element in X.

Examples
Given the tridiagonal system of equations:
-4t + u = 6
2t - 4u + v = -8
2u - 4v +w = -5
2v -4w = 8

the solution can be found and improved by using the following program:

PRO ExLA TRI MPROVE
Define array a:

aupper =[1, 1, 1]
adiag = [-4, -4, -4, -4]
alower =[2, 2, 2]

What's New in IDL 5.6 LA_TRIMPROVE

382 Chapter 3: New IDL Routines

; Define right-hand side vector b:
b = [61 '81 '51 8]

; Deconpose a:

dl oner = al ower

darray adi ag

dupper aupper

LA TRIDC, dl ower, darray, dupper, u2, index

; Conpute and inprove the solution:
x = LA TRI SOL(dl ower, darray, dupper, u2, index, b)
xnew = LA TRI MPROVE(Al ower, Adi ag, Aupper, $
dl ower, darray, dupper, u2, index, b, x)
PRI NT, 'LA TRISOL inproved solution:'
PRI NT, xnew
END

When this program is compiled and run, IDL prints:

LA TRI SOL inproved sol ution:
-1. 00000 2.00000 2.00000 -1. 00000

Version History
Introduced 5.6
See Also

LA_TRIDC, LA_TRISOL

LA_TRIMPROVE What's New in IDL 5.6

Chapter 3: New IDL Routines

LA_TRIQL

383

The LA_TRIQL procedure usesthe QL and QR variants of the implicitly-shifted QR
algorithm to compute the eigenvalues and eigenvectors of a symmetric tridiagonal
array. The LA_TRIRED routine can be used to reduce areal symmetric (or complex
Hermitian) array to tridiagonal form suitable for input to this procedure.

LA_TRIQL isbased on the following LAPACK routines:

Output Type

LAPACK Routine

Float sstegr
Double dsteqr
Complex cstegr
Double complex zsteqr

Table 3-25: LAPACK Routine Basis for LA_TRIQL

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIQL, D, E[, A] [, /DOUBLE] [, STATUS=variable]

Arguments
D

A named vector of length n containing the real diagona elements, optionally created
by the LA_TRIRED procedure. Upon output, D isreplaced by areal vector of length

n containing the eigenvalues.

E

The (n - 1) real subdiagonal elements, optionally created by the LA_TRIRED
procedure. On output, the values within E are destroyed.

What's New in IDL 5.6

LA _TRIQL

384

Chapter 3: New IDL Routines

An optional named variable that returns the eigenvectors as a set of n row vectors. If
the eigenvectors of atridiagonal array are desired, A should be input as an identity
array. If the eigenvectors of an array that has been reduced by LA_TRIRED are
desired, A should be input as the Array output from LA_TRIRED. If Aisnot input,
then elgenvectors are not computed. A may be either real or complex.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
DOUBLE = 0if none of the inputs are double precision. If A is not input, then the
default is/DOUBLE if D is double precision. If Aisinput, then the default is
/DOUBLE if Aisdouble precision (real or complex).

STATUS

Set this keyword to a named variable that will contain the status of the computation.
Possible values are:

e STATUS = 0: The computation was successful.

* STATUS> 0: The algorithm failed to find all eigenvaluesin 30n iterations.
The STATUS value specifies how many elements of E have not converged to
zero.

Note
If STATUS is not specified, any error messages will be output to the screen.

Examples

LA _TRIQL

The following example program computes the eigenval ues and eigenvectors of a
given symmetric array:

PRO ExLA TR QL
; Create a symretric random array:

n =14

seed = 12321

Array = RANDOMN\(seed, n, n)
array = array + TRANSPCSE(arr ay)

What's New in IDL 5.6

Chapter 3: New IDL Routines 385

; Reduce to tridiagonal form
g = array ; make a copy
LA TRIRED, q, d, e

; Compute eigenval ues and ei genvectors
ei genvalues = d

ei genvectors = q

LA TRIQL, eigenval ues, e, eigenvectors
PRI NT, 'LA TRI QL eigenval ues:

PRI NT, ei genval ues

END

When this program is compiled and run, IDL prints:

LA TRI QL eigenval ues:
-2.87710 -0. 663354 2.92018 3.59648

Version History
Introduced 5.6
See Also

LA_TRIRED, TRIQL

What's New in IDL 5.6 LA_TRIQL

386 Chapter 3: New IDL Routines

LA_TRIRED

The LA_TRIRED procedure reduces areal symmetric or complex Hermitian array to
real tridiagonal form T. If the array isreal symmetric then the decomposition is
A=QTQ' whereQisorthogonal. If the array is complex Hermitian then the
decompositionisA = Q T Q" where Q is unitary. The superscript T represents the
transpose while superscript H represents the Hermitian, or transpose complex
conjugate.

LA_TRIRED is based on the following LAPACK routines:

Output Type LAPACK Routine
Float ssytrd, sorgtr
Double dsytrd, dorgtr
Complex chetrd, cungtr
Double complex zhetrd, zungtr

Table 3-26: LAPACK Routine Basis for LA_TRIRED

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.

Syntax

LA_TRIRED, Array, D, E [, /DOUBLE] [, /UPPER]
Arguments

Array

A named variable containing the real or complex array to decompose. Only the lower
triangular portion of Array is used (or upper if the /UPPER keyword is set). This
procedure returns Array as the real orthogonal (or complex unitary) Q array used to
reduce the original array to tridiagonal form.

D

An n-element output vector containing the real diagonal elements of the tridiagonal
array. Note that D isalwaysreal.

LA_TRIRED What's New in IDL 5.6

Chapter 3: New IDL Routines 387

E

An (n - 1) element output vector containing the real subdiagonal el ements of the
tridiagona array. Note that E is alwaysreal.

Keywords
DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision (real) result. Set DOUBLE = 0 to use single-precision for computations and
to return a single-precision (real) result. The default is/DOUBLE if Array is double
precision, otherwise the default isDOUBLE = 0.

UPPER
If this keyword is set, then only the upper triangular portion of Array is used, and the
upper triangular array is returned. The default isto use the lower triangular portion
and return the lower triangular array.
Examples
See LA_TRIQL for an example of using this procedure.
Version History
Introduced 5.6
See Also

LA_TRIQL, TRIRED

What's New in IDL 5.6 LA_TRIRED

388 Chapter 3: New IDL Routines

LA_TRISOL

The LA_TRISOL function is used in conjunction with the LA_TRIDC procedure to
solve a set of nlinear equationsin n unknowns, AX = B, where A is atridiagonal
array. The parameter A isinput not as the original array, but asits LU decomposition,
created by theroutine LA_TRIDC.

The LA_TRISOL function may also be used to solve for multiple systems of linear
equations, with each column of B representing a different set of equations. In this
case, theresult is ak-by-n array where each of the k columns represents the solution
vector for that set of equations.

LA_TRISOL isbased on the following LAPACK routines:

Output Type LAPACK Routine
Float sgttrs
Double dgttrs
Complex cgttrs
Double complex zgttrs

Table 3-27: LAPACK Routine Basis for LA_TRISOL

For details see Anderson et al., LAPACK Users Guide, 3rd ed., SIAM, 1999.
Syntax

Result = LA_TRISOL(AL, A, AU, U2, Index, B [, /DOUBLE])
Return Value

The result is an n-element vector or k-by-n array.
Arguments

AL

The (n - 1) elements of the lower bidiagonal array, created by the LA_TRIDC
procedure.

LA_TRISOL What's New in IDL 5.6

Chapter 3: New IDL Routines 389

A

The n diagona elements of the upper triangular array, created by the LA_TRIDC
procedure.

AU

The (n - 1) superdiagonal elements of the upper triangular array, created by the
LA_TRIDC procedure.

u2

The (n - 2) elements of the second superdiagonal of the upper triangular array, created
by the LA_TRIDC procedure.

Index

An input vector, created by the LA_TRIDC procedure, containing the row
permutations which occurred as aresult of partial pivoting.

B

An n-element input vector containing the right-hand side of the linear system, or a k-
by-n array, where each of the k columns represents a different linear system.

Keywords
DOUBLE
Set this keyword to use double-precision for computations and to return a double-
precision (real or complex) result. Set DOUBLE = 0 to use single-precision for
computations and to return asingle-precision (real or complex) result. The default is
/DOUBLE if AL isdouble precision, otherwise the default is DOUBLE = 0.
Example
For an example of using this routine see LA_TRIMPROVE.
Version History

Introduced 5.6

What's New in IDL 5.6 LA_TRISOL

390 Chapter 3: New IDL Routines

See Also

LA_TRIDC, LA_TRIMPROVE, TRISOL

LA_TRISOL What's New in IDL 5.6

Chapter 3: New IDL Routines 391

MAP_PROJ FORWARD

The MAP_PROJ FORWARD function transforms map coordinates from longitude
and latitude to Cartesian (X, y) coordinates, using either the M AP system variable or
a supplied map projection structure.

Syntax

Result = MAP_PROJ FORWARD(Longitude [, Latitude]
[, CONNECTIVITY =vector] [, MAP_STRUCTURE=value]
[, POLYGONS=variable] [, POLYLINES=variable] [, /RADIANS])

Return Value

Theresultisa (2, n) array containing the Cartesian (X, y) coordinates.

Note
If the POLY GONS or POLY LINES keyword is present, the number of pointsin the

result may be different than the number of input points, depending upon whether
clipping and splitting occurs.

Arguments

Longitude

An n-element vector containing the longitude values. If the Latitude argument is
omitted, Longitude must be a (2, n) array of longitude and latitude pairs.

Latitude

An n-element vector containing latitude values. If this argument is omitted,
Longitude must be a (2, n) array of longitude and latitude pairs.

What's New in IDL 5.6 MAP_PROJ_FORWARD

392 Chapter 3: New IDL Routines

Keywords

CONNECTIVITY

Set this keyword to a vector containing an input connectivity list for polygons or
polylines. The CONNECTIVITY keyword allows you to specify multiple polygons
or polylinesusing asingle array. The CONNECTIVITY list is aone-dimensional
integer array of the form:

[ml, T iy s — 1 Maiguig e sim, — g e My g g e Jmn_lJ

where each my is an integer specifying the number of verticesthat define the polyline
or polygon (the vertex count), and each associated set of i,...i,,.; areindicesinto the
arrays of vertices specified by the Longitude and Latitude arguments.

For example, to draw polylines between the first, third, and sixth longitude and
latitude values and the fourth, sixth, ninth, and tenth longitude and latitude val ues, set
the CONNECTIVITY array equal to[3,0, 2,5, 4, 3,5, 8, 9] .

Toignore a set of entriesin the CONNECTIVITY array, set the vertex count, ny,
equal to zero. (Note that if you set an m equal to zero, you must remove the
associated set of ig...i,.1 values aswell.) To ignore the remaining entries in the
CONNECTIVITY array, set the vertex count, ny, equal to -1.

Thiskeyword isignored if neither POLY GONS nor POLY LINES are present.
MAP_STRUCTURE

Set this keyword to a! MAP structure variable containing the projection parameters,
as constructed by the MAP_PROJ_INIT. If this keyword is omitted, the ' MAP
system variable is used.

POLYGONS

Set this keyword to a named variable that will contain aconnectivity array of the
form described abovein the CONNECTIVITY keyword.

If this keyword is present, the arrays specified by the Longitude and Latitude
arguments are assumed to be the vertices of a closed polygon. In this case, polygon
clipping and splitting is performed in addition to the map transform, and the
connectivity array is returned in the specified variable. If thiskeyword is not present,

MAP_PROJ_FORWARD What's New in IDL 5.6

Chapter 3: New IDL Routines 393

the arrays specified by the Longitude and Latitude arguments are assumed to be
independent points and no clipping or splitting is performed.

POLYLINES

Set this keyword to a named variable that will contain aconnectivity array of the
form described abovein the CONNECTIVITY keyword.

If this keyword is present, the arrays specified by the Longitude and Latitude
arguments are assumed to be the vertices of apolyline. In this case, polyline clipping
and splitting is performed in addition to the map transform, and the connectivity array
isreturned in the specified variable.

If this keyword is not present, the arrays specified by the Longitude and Latitude
arguments are assumed to be independent points and no clipping or splitting is
performed.

RADIANS

Set this keyword to indicate that the input longitude and latitude coordinates arein
radians. By default, coordinates are assumed to be in degrees.

Examples

The following example creates a | atitude and longitude grid with labels for the
Goodes Homol osine map projection.

Hel per function. Constructs the polyline objects.
PRO Ex_Map_AddPol yli ne, |abel, $

gridLon, gridLat, sMap, oMdel, oContainer, oFont, $

LONG TUDE = | ongi t ude

| ongi tude = KEYWORD_SET(| ongi t ude)

Transformfromlat/lon to X/'Y cartesian.
gri duv = MAP_PROJ_FORWARD(gri dLon, gridLat, $
MAP=sMap, POLYLI NES = gri dPol y)
| F (N_ELEMENTS(griduv) LT 2) THEN $
RETURN

Construct |abel object if desired.
IF (label NE '') THEN BEG N
oLabel = OBJ_NEW' |IDLgrText', |abel, $
ALIGN = longitude ? 0.5 : 1, $
FONT = oFont, VERTI CAL_ALI GN=0. 5)
oCont ai ner - >Add, olLabel
ENDI F

What's New in IDL 5.6 MAP_PROJ_FORWARD

394 Chapter 3: New IDL Routines

; Create the polyline object.

oModel - >Add, OBJ_NEW' I Dl grPolyline', griduw, $
LABEL_OBJ = oLabel, $
LABEL_OFFSET = longitude ? 0.35 : 0, $
/ USE_LABEL_ORI ENTATI ON, /USE_TEXT ALIGN, $
POLYLI NE = gri dPol y)

END

; Main function. Creates a grid over a map projection.
PRO Ex_Map_Proj _Forward

; Construct ! MAP structure containing the projection.
sMap = MAP_PRQJ_I NI T(' Goodes Honol osi ne')

; Create a graphics nodel to hold the visualizations.
oMbdel = OBJ_NEW' | DLgr Model ')

oCont ai ner = OBJ_NEW' | DL_Cont ai ner')

oFont = OBJ_NEW' | DLgrFont', SIZE = 4)

oCont ai ner -> Add, oFont

deg = STRING(176b) ; degrees synbol in Truetype

; Latitude lines.
gridLon = DI NDGEN(361) - 180
latitude = 15*(1 NDGEN(11) - 5)

FOR i = 0, (N_ELEMENTS(latitude) - 1) DO BEG N
lat = latitude[i]
gridLat = REPLI CATE(l at, 361)

; Create the latitude |abel.
| abel = (lat EQO) ? "Equ' : $
STRTRI M ABS(l at),2) + deg + (['N,"'S])[lat LT 0]
Ex_Map_Addpol yli ne, |abel, gridLon, gridLat, $
sMap, oModel, oContainer, oFont
ENDFOR

; Longi tude |ines.
gridLat = DI NDGEN(181) - 90

; Add in sonme extra lines for the Goode projections.
| ongi tude = [20* (DI NDGEN(18) - 9), $
-179.999d, -20.001d, -100.001d, -40.001d, 80.001d]

FOR i 0, N_ELEMENTS(I ongi tude) - 1 DO BEGA N
I on I ongi tude[i]
gridLon = REPLI CATE(I on, 181)

MAP_PROJ_FORWARD What's New in IDL 5.6

Chapter 3: New IDL Routines 395

; Create the |ongitude |abel.
| abel = STRTRI M ROUND(ABS(1 on)),2) + deg
IF ((lon nod 180) NE 0) THEN $
| abel = label + (['E',"W])[lon LT 0]
IF (lon NE FI X(lon)) THEN | abel ="'
Ex_Map_Addpol yli ne, |abel, gridLon, gridLat, $
sMap, oModel, oContainer, oFont, /LONG TUDE
ENDFOR

; Visualize our map projection.
XOBJVI EW oModel , SCALE = 0.9, /BLOCK

; Clean up our objects.
OBJ_DESTROY, [oModel, oCont ai ner]

END
Version History
Introduced: 5.6
See Also

MAP_PROJ_INIT, MAP_PROJ INVERSE

What's New in IDL 5.6 MAP_PROJ_FORWARD

396 Chapter 3: New IDL Routines

MAP_PROJ_INIT

The MAP_PROJ_INIT function initializes a mapping projection, using either IDL’s
own map projections or map projections from the U.S. Geological Survey's General
Cartographic Transformation Package (GCTP). GCTP version 2.0 isincluded with
IDL.

Note
The IMAP system variable is unaffected by MAP_PROJ_INIT. To use the map
projection returned by MAP_PROJ INIT for direct or object graphics, use the
MAP_PROJ FORWARD and MAP_PROJ INVERSE functionsto convert
longitude/latitude values into Cartesian (x, y) coordinates before visualization.

Thisroutine iswritten in the IDL language. Its source code can be found in
map_proj _init.prointhelib subdirectory of the IDL distribution.

Syntax

Result = MAP_PROJ_INIT(Projection [, DATUM=value] [, /GCTP|
[, LIMIT=vector] [, /RADIANS] [, /RELAXED])

K eywor ds—Projection Parameters:

[, CENTER_AZIMUTH=value] [, CENTER_LATITUDE=value]

[, CENTER_LONGITUDE=value] [, FALSE_EASTING=value]

[, FALSE_NORTHING=value] [, HEIGHT=value]
[,HOM_AZIM_LONGITUDE=value] [, HOM_AZIM_ANGLE=value]

[, HOM_LATITUDE1=value] [, HOM_LATITUDE2=value]

[, HOM_LONGITUDE1=value] [, HOM_LONGITUDE2=value]

[, 1S ZONES=valug] [, IS JUSTIFY=value] [, MERCATOR_SCALE=value]

[, OEA_ANGLE=value] [, OEA_SHAPEM=value] [, OEA_SHAPEN=value]

[, ROTATION=value] [, SEMIMAJOR_AXIS=value] [, SEMIMINORAXIS=value]
[, SOM_INCLINATION=value] [, SOM_LONGITUDE=value]

[, SOM_PERIOD=value] [, SOM_RATIO=value] [, SOM_FLAG=value]

[, SOM_LANDSAT_NUMBER=value] [, SOM_LANDSAT_PATH=value]

[, SPHERE_RADIUS=value] [, STANDARD_PARALLEL=value]

[, STANDARD_PAR1=value] [, STANDARD_PAR2=value] [, SAT_TILT=value]
[, TRUE_SCALE_LATITUDE=value] [, ZONE=value]

MAP_PROJ_INIT What's New in IDL 5.6

Chapter 3: New IDL Routines 397

Return Value

Theresult isa!MAP structure containing the map parameters, which can be used as
input to the map transformation functions MAP_PROJ_FORWARD and
MAP_PROJ INVERSE.

Arguments

Projection

Set this argument to either aprojection index or ascalar string containing the name of
the map projection, as described in following tables:

Projection Name Allowed Keyword Parameters

1 Stereographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

2 Orthographic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

3 Lambert Conic SPHERE_RADIUS, STANDARD_PARLI,
STANDARD_PAR?2,
CENTER_LONGITUDE,
CENTER_LATITUDE

4 Lambert Azimuthal SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

5 Gnomonic SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER _LATITUDE, ROTATION

6 Azimuthal Equidistant SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Table 3-28: IDL Projections

What's New in IDL 5.6 MAP_PROJ_INIT

398

Chapter 3: New IDL Routines

Projection Name

Allowed Keyword Parameters

Satellite

SPHERE_RADIUS, HEIGHT, SAT_TILT,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Cylindrical

SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

Mercator

SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

10

Mollweide

SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

11

Sinusoidal

SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

12

Aitoff

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

13

Hammer Aitoff

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

14

Albers Equal Area Conic

SPHERE_RADIUS, STANDARD_PARLI,
STANDARD_PAR?2,
CENTER_LONGITUDE,
CENTER_LATITUDE

15

Transverse Mercator

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

16

Miller Cylindrical

SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

MAP_PROJ_INIT

Table 3-28: IDL Projections (Continued)

What's New in IDL 5.6

Chapter 3: New IDL Routines

399

Projection Name

Allowed Keyword Parameters

17

Robinson

SPHERE_RADIUS, CENTER_AZIMUTH,
CENTER_LONGITUDE,
CENTER_LATITUDE, ROTATION

18

Lambert Ellipsoid Conic

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PARZ,
CENTER_LONGITUDE,
CENTER_LATITUDE

19

Goodes Homolosine

SPHERE_RADIUS, CENTER_LONGITUDE

Table 3-28: IDL Projections (Continued)

The following are GCTP projections:

#

Projection Name

Allowed Keyword Parameters

101

UT™M

CENTER_LONGITUDE,
CENTER_LATITUDE, ZONE

102

State Plane

ZONE

103

Albers Equal Area

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PARZ,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

104

Lambert Conformal Conic

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PARZ,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

105

Mercator

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
TRUE_SCALE_LATITUDE,
FALSE_EASTING, FALSE_NORTHING

Table 3-29: GCTP Projections

What's New in IDL 5.6

MAP_PROJ_INIT

400

Chapter 3: New IDL Routines

Projection Name

Allowed Keyword Parameters

106

Polar Stereographic

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

107

Polyconic

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

108

Equidistant Conic A

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PARALLEL,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

208

Equidistant Conic B

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
STANDARD_PAR1, STANDARD_PARZ,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

109

Transverse Mercator

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

110

Stereographic

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

111

Lambert Azimuthal

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

MAP_PROJ_INIT

Table 3-29: GCTP Projections (Continued)

What's New in IDL 5.6

Chapter 3: New IDL Routines

401

Projection Name

Allowed Keyword Parameters

112 | Azimuthal

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

113 | Gnomonic

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

114 | Orthographic

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

115 | Near Side Perspective

SPHERE_RADIUS, HEIGHT,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

116 | Sinusoidal

SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

117 | Equirectangular

SPHERE_RADIUS,
CENTER_LONGITUDE,
TRUE_SCALE_LATITUDE,
FALSE_EASTING, FALSE_NORTHING

118 | Miller Cylindrical

SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

119 | Van der Grinten

SPHERE_RADIUS,
CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

Table 3-29: GCTP Projections (Continued)

What's New in IDL 5.6

MAP_PROJ_INIT

402

Chapter 3: New IDL Routines

Projection Name

Allowed Keyword Parameters

120

Hotine Oblique Mercator A

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING HOM_LONGITUDE],
HOM_LATITUDEL, HOM_LONGITUDEZ2,
HOM_LATITUDEZ2

220

Hotine Oblique Mercator B

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
MERCATOR_SCALE,
HOM_AZIM_ANGLE,
HOM_AZIM_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING

121

Robinson

SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

122

Space Oblique Mercator A

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
SOM_INCLINATION, SOM_LONGITUDE,
FALSE_EASTING, FALSE_NORTHING,

SOM_PERIOD, SOM_RATIO, SOM_FLAG

222

Space Oblique Mercator B

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
SOM_LANDSAT_NUMBER,
SOM_LANDSAT_PATH, FALSE_EASTING,
FALSE_NORTHING

123

Alaska Conformal

SEMIMAJOR_AXIS, SEMIMINOR_AXIS,
FALSE_EASTING, FALSE_NORTHING

124

Interrupted Goode

SPHERE_RADIUS

125

Mollweide

SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

126

Interrupted Mollweide

SPHERE_RADIUS

MAP_PROJ_INIT

Table 3-29: GCTP Projections (Continued)

What's New in IDL 5.6

Chapter 3: New IDL Routines 403
Projection Name Allowed Keyword Parameters

127 | Hammer SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

128 | Wagner IV SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

129 | Wagner VII SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING

130 | Oblated Equal Area SPHERE_RADIUS, OEA_SHAPEM,
OEA_SHAPEN, CENTER_LONGITUDE,
CENTER_LATITUDE, FALSE_EASTING,
FALSE_NORTHING, OEA_ANGLE

131 | Integerized Sinusoidal SPHERE_RADIUS,
CENTER_LONGITUDE, FALSE_EASTING,
FALSE_NORTHING, IS_ZONES,
IS_JUSTIFY

Table 3-29: GCTP Projections (Continued)
Keywords
Note

The following keywords apply to al projections.

DATUM

Set this keyword to either an integer code or ascalar string containing the name of the
datum to use for the ellipsoid. The default value depends upon the projection
selected, but is either the Clarke 1866 €llipsoid (datum 0), or a sphere of radius
6370.997 km (datum 19).

What's New in IDL 5.6

MAP_PROJ_INIT

404

Chapter 3: New IDL Routines

Thefollowing datums (or spheroids) are available for use with the DATUM keyword:

MAP_PROJ_INIT

Index Name Semimajor Semiminor
axis (m) axis (m)

0 Clarke 1866 6378206.4 6356583.8

1 Clarke 1880 6378249.145 6356514.86955

2 Bessel 6377397.155 6356078.96284

3 International 1967 6378157.5 6356772.2

4 International 1909 6378388.0 6356911.94613

5 WGS 72 6378135.0 6356750.519915

6 Everest 6377276.3452 6356075.4133

7 WGS 66 6378145.0 6356759.769356

8 GRS 1980/WGS 84 6378137.0 6356752.31414

9 Airy 6377563.396 6356256.91

10 Modified Everest 6377304.063 6356103.039

11 Modified Airy 6377340.189 6356034.448

12 Wal beck 6378137.0 6356752.314245

13 Southeast Asia 6378155.0 6356773.3205

14 Australian National 6378160.0 6356774.719

15 Krassovsky 6378245.0 6356863.0188

16 Hough 6378270.0 6356794.343479

17 Mercury 1960 6378166.0 6356784.283666

18 Modified Mercury 1968 | 6378150.0 6356768.337303

19 Sphere 6370997.0 6370997.0

Table 3-30: Datums available for use by MAP_PROJ_INIT.

What's New in IDL 5.6

Chapter 3: New IDL Routines 405

Note
For many projections, you can specify your own datum by using either the
SEMIMAJOR_AXIS and SEMIMINOR_AXIS or the SPHERE_RADIUS
keywords.

GCTP

Set this keyword to indicate that the GCTP library should be used for the projection.
By default, MAP_PROJ_INIT usesthe IDL projection library. This keyword is
ignored if the projection exists only in one system (GCTP or IDL), or if the
Projection argument is specified as an index.

LIMIT

Set this keyword to a four-element vector of the form
[Latmin, Lonnin, Latmax, Lonmex]

that specifies the boundaries of the region to be mapped. (Lonmin, Latmin) and
(Lonmax, Latmax) are the longitudes and latitudes of two points diagona from each
other on the region's boundary.

Note
When using MAP_PROJ FORWARD, if thelongitude rangein LIMIT isless than
or equal to 180 degrees, map clipping is performed in lat/lon coordinates before the
transform. If the longitude range is greater than 180 degrees, map clipping is done
in Cartesian coordinates after the transform. For non-cylindrical projections,
clipping after the transformation to Cartesian coordinates means that some lat/lon
points that fall outside the bounds specified by LIMIT may not be clipped. This
occurs when the transformed lat/lon points fall inside the cartesian clipping
rectangle.

RADIANS

Set this keyword to indicate that all parameters that represent angles are specified in
radians rather than degrees.

RELAXED
If this keyword is set, any projection parameters which do not apply to the specified

projection will be quietly ignored. By default, MAP_PROJ_INIT will issue errorsfor
parameters that do not apply to the specified projection.

What's New in IDL 5.6 MAP_PROJ_INIT

406 Chapter 3: New IDL Routines

Projection Keywords

The following keywords apply only to some projections. Consult the list under
“Projection” on page 397 to determine which keywords apply to the projection you
have selected.

CENTER_AZIMUTH

Set this keyword to the angle of the central azimuth, in degrees east of North. The
default is O degrees. The poleis placed at an azimuth of CENTRAL_AZIMUTH
degrees counterclockwise of North, as specified by the ROTATION keyword.

CENTER_LATITUDE

Set this keyword to the latitude of the point on the earth’s surface to be mapped to the
center of the projection plane. Latitude is measured in degrees North of the equator
and must be in the range: -90 to +90. The default value is zero.

CENTER_LONGITUDE

Set this keyword to the longitude of the point on the earth’s surface to be mapped to
the center of the map projection. Longitude is measured in degrees east of the
Greenwich meridian and must be in the range: -360 to +360. The default valueis
zero.

FALSE_EASTING

Set this keyword to the fal se easting value (in meters) to be added to each x
coordinate for the forward transform, or subtracted from each x coordinate for the
inverse transform.

FALSE_NORTHING

Set this keyword to the fal se northing value (in meters) to be added to each y
coordinate for the forward transform, or subtracted from each y coordinate for the
inverse transform.

HEIGHT

Set this keyword to the height (in meters) above the earth’s surface for satellite
projections.

MAP_PROJ_INIT What's New in IDL 5.6

Chapter 3: New IDL Routines 407

HOM_AZIM_LONGITUDE

Set this keyword to the longitude of the central meridian point where the azimuth
occurs.

HOM_AZIM_ANGLE

Set this keyword to the azimuth angle, measured in degrees or radians, east of a
north-south line that intersects the center line. The center line is defined as the great
circle path along which the Mercator cylinder touches the sphere.

HOM_LATITUDE1

Set this keyword to the latitude of the first point on the center line. The center lineis
defined as the great circle path along which the Mercator cylinder touches the sphere.

HOM_LATITUDE?2

Set this keyword to the latitude of the second point on the center line. The center line
is defined as the great circle path along which the Mercator cylinder touches the
sphere.

HOM_LONGITUDE1

Set this keyword to the longitude of the first point on the center line. The center line
is defined as the great circle path along which the Mercator cylinder touches the
sphere.

HOM_LONGITUDEZ2

Set this keyword to the longitude of the second point on the center line. The center
lineis defined as the great circle path along which the Mercator cylinder touches the
sphere.

IS_ZONES

Set this keyword to the number of longitudinal zonesto includein the projection.

What's New in IDL 5.6 MAP_PROJ_INIT

408 Chapter 3: New IDL Routines

IS_JUSTIFY

Set this keyword to a flag indicating what to do with rows with an odd number of
columns. The possible values are:

Value Description
0 Indicates the extra column is on the right of the projection Y axis.
1 Indicates the extra column is on the left of the projection Y axis.
2 Calculate an even number of columns.

Table 3-31: 1S_JUSTIFY Keyword Values

MERCATOR_SCALE

Set this keyword to the scale factor at the central meridian (Transverse Mercator
projection) or the center of the projection (Hotine Oblique Mercator projection). For
the Transverse Mercator projection, the default scale is 0.9996.

OEA_ANGLE
Set this keyword to the Oblated Equal Area ova rotation angle.
OEA_SHAPEM

Set this keyword to the Oblated Equal Area shape parameter m. The val ue of
OEA_SHAPEM determines the horizontal flathess of the oblong region, and is
usually set to a va ue between one and three.

OEA_SHAPEN

Set this keyword to the Oblated Equal Area ova shape parameter n. The va ue of
OEA_SHAPEN determines the vertical flatness of the oblong region, and is usualy
set to avalue between one and three.

Note
Setting both OEA_SHAPEM and OEA_SHAPEN equal to two is equivaent to
using the Lambert Azimuthal projection.

MAP_PROJ_INIT What's New in IDL 5.6

Chapter 3: New IDL Routines 409

ROTATION

Set this keyword to the angle through which the North direction should be rotated
around the line between the earth’s center and the point (CENTER_LONGITUDE,
CENTER_LATITUDE). ROTATION is measured in degrees with the positive
direction being clockwise rotation around the line. Values should be in the range
-180 to +180. The default value is zero.

Note
If the center of the map is at the North pole, North isin the direction
CENTER_LONGITUDE + 180. If the origin is at the South pole, Northisin the
direction CENTER_LONGITUDE.

SEMIMAJOR_AXIS

Set this keyword to the length (in meters) of the semimajor axis of the reference
ellipsoid. The default is either the Clarke 1866 datum (6378206.4 m) or the Sphere
radius (6370997 m), depending upon the projection.

SEMIMINOR_AXIS

Set this keyword to the length (in meters) of the semiminor axis of the reference
ellipsoid. The default is either the Clarke 1866 datum (6356583.8 m) or the Sphere
radius (6370997 m), depending upon the projection.

SOM_INCLINATION

Set this keyword to the orbit inclination angle of the ascending node, counter-
clockwise from equator.

SOM_LONGITUDE

Set this keyword to the longitude of the ascending orbit at the equator.
SOM_PERIOD

Set this keyword to the period in minutes of the satellite revolution.

SOM_RATIO

Set this keyword to the Landsat ratio to compensate for confusion at the northern end
of orbit. A typical valueis 0.5201613.

What's New in IDL 5.6 MAP_PROJ_INIT

410

Chapter 3: New IDL Routines

SOM_FLAG

Set this keyword to the end of path flag for Landsat, where O isthe start and 1 is the
end.

SOM_LANDSAT_NUMBER
Set this keyword to the Landsat satellite number.
SOM_LANDSAT_PATH

Set this keyword to the Landsat path number (use 1 for Landsat 1, 2 and 3; use 2 for
Landsat 4, 5 and 6).

SPHERE_RADIUS

Set this keyword to the radius (in meters) of the reference sphere. The default is
6370997 m.

STANDARD PARALLEL
Set this keyword to the latitude of the standard parallel aong which the scaleis true.
STANDARD PARL1

Set this keyword to the latitude of the first standard parallel along which the scaleis
true.

STANDARD_PAR2

Set this keyword to the latitude of the second standard parallel along which the scale
istrue.

SAT TILT

Set this keyword to the downward tilt in degrees of the camera, in degrees from the
projection horizontal.

TRUE_SCALE_LATITUDE
Set this keyword to the latitude of true scale.
ZONE

Set this keyword to an integer giving the zone for the GCTP UTM projection or
GCTP State Plane projection.

MAP_PROJ_INIT What's New in IDL 5.6

Chapter 3: New IDL Routines 411

Note
For the UTM projection, you may also usethe CENTER_LONGITUDE and
CENTER_LATITUDE keywordsto set the zone. Internally, the ZONE value will
be computed from the longitude and latitude.

Examples

See MAP_PROJ_FORWARD for an example of using this function.
Version History

Introduced: 5.6
See Also

MAP_PROJ FORWARD, MAP_PROJ_INVERSE, MAP_SET

What's New in IDL 5.6 MAP_PROJ_INIT

412 Chapter 3: New IDL Routines
MAP_PROJ_INVERSE

The MAP_PROJ_INVERSE function transforms map coordinates from Cartesian
(x, y) coordinates to longitude and latitude, using either the IMAP system variable or
a supplied map projection variable.

Syntax

Result = MAP_PROJ INVERSE (X [, Y] [, MAP_STRUCTURE=valug]
[, /RADIANS])

Return Value

Theresultisa (2, n) array containing the longitude/latitude coordinates.

Arguments
X

An n-element vector containing the x values. If the Y argument is omitted, X must be
a(2,n) aray of X and Y pairs.

Y

An n-element vector containing y values. If this argument is omitted, X must be a
(2, n) array of X and Y pairs.

Keywords

MAP_STRUCTURE

Set this keyword to a! MAP structure variable containing the projection parameters,
as constructed by the MAP_PROJ_INIT. If this keyword is omitted, the ' MAP
system variable is used.

RADIANS
Set this keyword to indicate that the returned longitude and | atitude coordinates

should be expressed in radians. By default, returned coordinates are expressed in
degrees.

MAP_PROJ_INVERSE What's New in IDL 5.6

Chapter 3: New IDL Routines 413

Version History
Introduced: 5.6
See Also

MAP_PROJ FORWARD, MAP_PROJ_INIT

What's New in IDL 5.6 MAP_PROJ_INVERSE

414 Chapter 3: New IDL Routines

MATRIX_POWER

The MATRIX_POWER function computes the product of a matrix with itself. For
example, the fifth power of array AisA# A# A# A # A. Negative powers are
computed using the matrix inverse of the positive power.

Syntax
Result = MATRIX_POWER(Array, N [, /DOUBLE] [, STATUS=value])
Return Value

Theresult is a square array containing the value of the matrix raised to the specified
power. A power of zero returns the identity matrix.

Arguments

Array
A sqguare, two-dimensiona array of any numeric type.

N

An integer representing the power. N may be positive or negative.
Keywords

DOUBLE

Set this keyword to return adouble-precision result. Explicitly set this keyword equal
to zero to return a single-precision result. The default return type depends upon the
precision of Array.

Note
Computations are always performed using double-precision arithmetic.

MATRIX_POWER What's New in IDL 5.6

Chapter 3: New IDL Routines 415

STATUS

Set this keyword equal to a named variable that will contain the status of the matrix
inverse for negative powers. Possible values are:

Value Description
0 Successful completion.
1 Singular array (which indicates that the inversion isinvalid).
2 Warning that a small pivot element was used and that
significant accuracy was probably lost.

Table 3-32: STATUS Keyword Values

For non-negative powers, STATUS is always set to 0.
Example

Print an array to the one millionth power:

array = [[0.401d, 0.600d], $
[0.525d, 0.475d]]
PRI NT, MATRI X_POVER(array, 1e6)

IDL prints:

2.4487434e+202 2.7960773e+202
2.4465677e+202 2.7935929e+202

Version History
Introduced: 5.6
See Also

MATRIX_MULTIPLY, “Multiplying Arrays’ in Chapter 22 of the Using | DL manual

What's New in IDL 5.6 MATRIX_POWER

416 Chapter 3: New IDL Routines

PRODUCT

The PRODUCT function returnsthe product of elementswithin an array. The product
of the array elementsover agiven dimension isreturned if the Dimension argument is
present. Because the product can easily overflow, the product is computed using
double-precision arithmetic and the Result is double precision.

Tip
If your array has a mix of very large and very small values, the product may
underflow or overflow during the computation, even though the final result would
be within double-precision limits. In this case, you should not use PRODUCT, but
instead compute the product by taking the logarithm, using the TOTAL function,
and then taking the exponential: Result = EXP(TOTAL(ALOG(Array))).

Syntax

Result = PRODUCT (Array [, Dimension] [, /CUMULATIVE] [, /NAN])
Return Value

Returns the product of the elements of Array.
Arguments

Array

The array for which to compute the product. This array can be of any basic type
except string.

Dimension

An optional argument specifying the dimension over which to compute the product,
starting at one. If thisargument is not present or zero, the product of all the array
elementsisreturned. If thisargument is present, the result is an array with one less
dimension than Array. For example, if the dimensions of Array are N1, N2, N3, and
Dimension is 2, the dimensions of the result are (N1, N3), and element (i j) of the
result contains the product:

N,—1

R = [Ak
k=0

PRODUCT What's New in IDL 5.6

Chapter 3: New IDL Routines 417

Keywords

CUMULATIVE

If this keyword is set, the result is an array of the same size as the input, with each
element, i, containing the product of the input array elements 0 to i. This keyword

also works with the Dimension parameter, in which case the cumulative product is
performed over the given dimension.

NAN

Set this keyword to cause the routine to check for occurrences of the IEEE floating-
point value NaN in the input data. Elements with the value NaN are treated as
missing data with the value 1.

Thread Pool Keywords

This routine iswritten to make use of IDL's thread pool, which can increase
execution speed on systems with multiple CPUs. The values stored in the | CPU
system variable control whether IDL uses the thread pool for a given computation. In
addition, you can use the thread pool keywords TPOOL_MAX_ELTS,
TPOOL_MIN_ELTS, and TPOOL_NOTHREAD to override the defaults established
by 'CPU for a single invocation of this routine. See Appendix |, “Thread Pool
Keywords’ in the IDL Reference Guide.

Examples

To find the product of all elementsin aone-dimensiona array:

Define a one-dinensional array:
array = [20, 10, 5, 5, 3]

Find the product of the array el enents:
prod = PRODUCT(array)

Print the results:

PRI NT, 'Product of Array ="', prod
IDL prints:
Product of Array = 15000. 000

Now find the product of elementsin atwo-dimensional array:

Define a two-dinensional array:
array = FINDGEN(4,4) + 1

What's New in IDL 5.6 PRODUCT

418

; Find the product of all array elenents:
prodAll = PRODUCT(array)

; Find the product along the first dinension:

prodl = PRODUCT(array, 1)

; Find the product along the second di nension

prod2 = PRODUCT(array, 2)

: Print the results

PRI NT, 'Product of all elements ="', prodA

PRI NT, 'Product along first dimension:
PRI NT, prodl

PRI NT, 'Product al ong second di nmensi on:
PRI NT, prod2

IDL prints:

Product of all elenents 2.0922790e+013
Product along first di mension:

24.000000 1680. 0000 11880. 000
Product al ong second di mensi on:
585. 00000 1680. 0000 3465. 0000

Version History

Introduced: 5.6

See Also

PRODUCT

FACTORIAL, TOTAL

Chapter 3: New IDL Routines

43680. 000

6144. 0000

What's New in IDL 5.6

Chapter 3: New IDL Routines 419

REGISTER_CURSOR

The REGISTER_CURSOR procedure associates the given name with the given
cursor information. This name can then be used with the
IDLgrWindow::SetCurrentCursor method.

Syntax

REGISTER_CURSOR, Name, Image], MASK=valug] [, HOTSPOT=valug]
[, /OVERWRITE]

Arguments

Name

This argument sets the name to associate with this cursor. The name is case-
insensitive. Once registered, the name can be used with the
IDLgrWindow::SetCurrentCursor method.

Image

Set this argument to a 16 line by 16 column bitmap, contained in a 16-element short
integer vector, specifying the cursor pattern. The offset from the upper-left pixel to
the point that is considered the "hot spot" can be provided using the HOTSPOT
keyword.

Keywords

MASK

This keyword can be used to simultaneously specify the mask that should be used. In
the mask, bits that are set indicate bitsin the IMAGE that should be seen and bits that
are not are "masked out".

HOTSPOT

Set this keyword to a two-element vector specifying the [X, y] pixel offset of the
cursor "hot spot”, the point which is considered to be the mouse position, from the
lower-left corner of the cursor image. The cursor image is displayed top-down (the
first row isdisplayed at the top).

What's New in IDL 5.6 REGISTER_CURSOR

420 Chapter 3: New IDL Routines

OVERWRITE

By default, if the cursor already exists, the values are not changed. By setting this
keyword to true, the current cursor value is updated with the values provided by this
routine call.

Version History
Introduced: 5.6

See Also

IDLgrWindow:: SetCurrentCursor

REGISTER_CURSOR What's New in IDL 5.6

Chapter 3: New IDL Routines 421

SHMDEBUG

The SHMDEBUG function enables a debugging mode in which IDL prints an
informational message (including a traceback) every time a variable created with the
SHMVAR function loses its reference to the underlying memory segment created by
SHMMAP. There are many reasons why a such a variable might lose its reference;
some reasons have to do with the internal implementation of the IDL interpreter and
are not obvious or visible to the IDL user.

Note
The SHMDEBUG debugging mode should be used for problem solving only, and
should not be part of production code.

Syntax

Result = SHMDEBUG(Enable)
Return Value

SHMDEBUG returns the previous setting of the debugging state.
Arguments

Enable

Set this argument equal to a non-zero value to enable debugging, or to zero to disable
debugging.

Examples

Create amemory segment, tie avariable to it, enable debugging, and then cause the
variable to lose the reference:

ol d_debug = SHVDEBUG 1) ; Enabl e debug node
SHVWAP, '"A'", 100 ; 100 element floating vector
z = SHWAR(' A') ; Variable tied to segnent
z[0] = FINDGEN(100) ; Does not |ose reference
z = FINDGEN(100) ; Loses reference

% Vari abl e rel eased shared nenory segnent: A
% Rel eased at: $MAIN$

What's New in IDL 5.6 SHMDEBUG

422

Chapter 3: New IDL Routines

Theassignment z[0] = FI NDGEN(100) explicitly uses subscripting to assign the
FINDGEN value to the array. Under normal circumstances, using subscripting in this
way on the left hand side of an assignment isinefficient and not recommended. In
this case, however, it has the desirable side effect of causing the variable Z to
maintain its connection to its existing underlying memory. In contrast, the second
(normally more desirable) assignment without the subscript causes IDL to allocate
different memory for the variable Z, with the side effect of losing the connection to
the shared memory segment.

Version History

Introduced: 5.6

See Also

SHMDEBUG

SHMMAP, SHMUNMAP, SHMVAR

What's New in IDL 5.6

Chapter 3: New IDL Routines 423

SHMMAP

The SHMM AP procedure maps anonymous shared memory, or local disk files, into
the memory address space of the currently executing IDL process. Mapped memory
segments are associated with an IDL array specified by the user as part of the call to
SHMMAP. The type and dimensions of the specified array determine the length of
the memory segment.

The array can be of any type except pointer, object reference, or string. (Structure
types are allowed as long as they do not contain any pointers, object references, or
strings.) By default, the array type is single-precision floating-point; other types can
be chosen by specifying the appropriate keyword.

Once such amemory segment exists, it can betied to an actual IDL variable using the
SHMVAR function, or unmapped using SHMUNMAP,

Why Use Mapped Memory?

» Shared memory is often used for interprocess communication. Any process
that has a shared memory segment mapped into its address space is able to
“se€” any changes made by any other process that has access to the same
segment. Shared memory is the default for SHMMARP, unless the FILENAME
keyword is specified.

* Memory-mapped files allow you to treat the contents of alocal disk fileasif it
were smple memory. Reads and writes to such memory are automatically
written to the file by the operating system using its standard virtual memory
mechanisms. A ccess to mapped files has the potential to be faster than
standard Input/Output using Read/Write system calls because it does not go
through the expensive system call interface, and because it does not require the
operating system to copy data between user and kernel memory buffers when
performing the 1/0. However, it is not as general or flexible as the standard I/0
mechanisms, and is therefore not areplacement for them.

Warning
Unlike most IDL functionality, incorrect use of SHMMAP can corrupt or even
crash your IDL process. Proper use of these low level operating system features
requires systems programming experience, and is not recommended for those
without such experience. You should be familiar with the memory and file mapping
features of your operating system and the terminology used to describe such
features.

What's New in IDL 5.6 SHMMAP

424 Chapter 3: New IDL Routines

SHMMAP uses the facilities of the underlying operating system. Any of several
alternatives may be used, as described in “ Types Of Memory Segments” on page 430.
SHMMAP uses the following rules, in the specified order, to determine which
method to use:

1. If the FILENAME keyword is present, SHMMAP creates a memory mapped
file segment.

2. If the SYSV keyword is used under UNIX, a System V shared memory
segment is created or attached. Use of the SY SV keyword under Windows will
cause an error to be issued.

3. If the LOCAL_MEMORY keyword is present, alocal memory segment is
created.

4. If none of the above options are specified, SHMMAP creates an anonymous
shared memory segment. Under UNIX, thisisdone with Posix shared memory.
Under Windows, the Cr eat eFi | eMappi ng() system call isused.

Syntax

SHMMAP [, SegmentName] [, Dy, ..., Dg] [, /BYTE] [, /COMPLEX]
[,/DCOMPLEX] [, /DESTROY_SEGMENT] [, DIMENSION=value] [, /DOUBLE]
[, FILENAME=value] [, /[FLOAT] [, GET_NAME=value]

[, GET_OS HANDLE=value] [, /INTEGER] [, /L64] [, /LONG] [, OFFSET=value]
[, OS_ HANDLE=value] [, /PRIVATE] [, SIZE=valu€] [, /SY SV]

[, TEMPLATE=value] [, TYPE=valug] [, /UINT] [, /UL64] [, /[ULONG]

Arguments

SegmentName

A scalar string supplying the name by which IDL will refer to the shared memory
segment. This nameisonly used by IDL, and does not necessarily correspond to the
name used for the shared memory segment by the underlying operating system. See
the discussion of the OS_HANDLE keyword for more information on the underlying
operating system name. If SegmentName is not specified, IDL will generate a unique
name. The SegmentName can be obtained using the GET_NAME keyword.

Di

The dimensions of the result. The D; arguments can be either asingle array
containing the dimensions or a sequence of scalar dimensions. Up to eight
dimensions can be specified.

SHMMAP What's New in IDL 5.6

Chapter 3: New IDL Routines 425

Keywords

BYTE

Set this keyword to specify that the memory segment should be treated as a byte
array.

COMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
single-precision floating-point array.

DCOMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
double-precision floating-point array.

DESTROY_SEGMENT

The UNIX anonymous shared memory mechanisms (Posix shm open() and System
V shnget ()) create shared memory segments that are not removed from the
operating system kernel until explicitly destroyed (or the system is rebooted). At any
time, aclient program can attach to such an existing segment, read or write to it, and
then detach. This can be convenient in situations where the need for the shared
memory islong lived, and programs that need it come and go. It also can create a
problem, however, in that shared memory segments that are not explicitly destroyed
can cause memory leaksin the operating system. Hence, it isimportant to properly
destroy such segments when they are no longer required.

For UNIX anonymous shared memory (Posix or System V), the default behavior is
for IDL to destroy any shared memory segments it created when the segments are
unmapped, and not to destroy segmentsit did not create. The DESTROY_SEGMENT
keyword is used to override this default: set DESTROY_SEGMENT to 1 (one) to
indicate that IDL should destroy the segment when it is unmapped, or O (zero) to
indicate that it should not destroy it. All such destruction occurs when the segment is
unmapped (viathe SHMUNMAP procedure) and not during the call to SHMMAP.

The DESTROY_SEGMENT keyword isignored under the Windows operating
system. Under UNIX, it isignored for mapped files.

DIMENSION

Set this keyword equal to avector of 1 to 8 elements specifying the dimensions of the
result. Setting this keyword is equivalent to specifying an array viathe D argument.

What's New in IDL 5.6 SHMMAP

426 Chapter 3: New IDL Routines

DOUBLE

Set this keyword to specify that the memory segment should be treated as a double-
precision floating-point array.

FILENAME

By default, SHMM AP maps anonymous shared memory. Set the FILENAME
keyword equal to a string containing the path name of afile to be mapped to create a
memory-mapped file. A shared mapped file can serve as shared memory between
unrelated processes. The primary difference between anonymous shared memory and
mapped filesis that mapped files require afile of the specified sizeto exist in the
filesystem, whereas anonymous shared memory has no user-visible representation in
the filesystem.

Unless the PRIVATE keyword is also specified, changes made to such a mapped file
are written back to the file by the operating system, and are visible to any other
process that is mapping the same file.

Note
The non-private form of file mapping corresponds to the MAP_SHARED flag to the
UNIX mrap() function, or the PAGE_READWRI TE to the Windows

Cr eat eFi | eMappi ng() system call.

FLOAT

Set this keyword to specify that the memory segment should be treated as a single-
precision floating-point array.

GET_NAME

If SegmentName is not specified in acall to SHMMARP, IDL automatically generates
aname. Set this keyword equal to a named variable that will receive the name
assigned by IDL to the memory segment.

GET_OS_HANDLE

Set this keyword equal to a named variable that will receive the operating system
name (or handle) for the memory segment. The meaning of the operating system
handle depends on both the operating system and the type of memory segment used.
See the description of the OS_HANDLE keyword for details.

SHMMAP What's New in IDL 5.6

Chapter 3: New IDL Routines 427

INTEGER
Set this keyword to specify that the memory segment should be treated as an integer
array.

L64

Set this keyword to specify that the memory segment should be treated as a 64-bit
integer array.

LONG

Set this keyword to specify that the memory segment should be treated as alongword
integer array.

OFFSET

If present and non-zero, this keyword specifies an offset (in bytes) from the start of
the shared memory segment or memory mapped file that will be used as the base
address for the IDL array associated with the memory segment.

Note
Most computer hardware is not able to access arbitrary data types at arbitrary
memory addresses. Datamust be properly aligned for its type or the program will
crash with an alignment error (often called a bus error) when the data is accessed.
The specific rules differ between machines, but in many cases the address of a data
object must be evenly divisible by the size of that object. IDL will issue an error if
you specify an offset that is not valid for the array specified.

Note
The actual memory mapping primitives provided by the underlying operating
system require such offsets to be integer multiples of the virtual memory pagesize
(sometimes called the allocation granularity) for the system. Thisvalueistypically
apower of two such as 8K or 64K. In contrast, IDL allows arbitrary offsets as long
asthey satisfy the alignment constraints of the data type. Thisisimplemented by
mapping the page that contains the specified offset, and then adjusting the memory
address to point at the specified byte within that page. In rounding your offset
request back to the nearest page boundary, IDL may map slightly more memory
than your reguest would seem to require, but never more than a single page.

What's New in IDL 5.6 SHMMAP

428

SHMMAP

Chapter 3: New IDL Routines

OS_HANDLE

Set this keyword equal to the name (or handle) used by the underlying operating
system for the memory segment. If you do not specify the OS HANDLE keyword,
SHMMAP will under some circumstances provide a default value. The specific
meaning and syntax of the OS_HANDLE depends on both the operating system and
the form of memory used. See the following sections for operating-system specific
behavior, and “ Types Of Memory Segments’ on page 430 for behavior differences
based on the form of memory used.

Posix (UNIX) Shared Memory

Usethe OS_ HANDLE keyword to supply astring value containing the system global
name of the shared memory segment. Such names are expected to start with a slash
(/) character, and not to contain any other slash characters. You can think of this as
mimicking the syntax for afile in the root directory of the system, although no such
fileis created. See your system documentation for the shm open() system call for
specific details. If you do not supply the OS HANDLE keyword, SHMMAP will
create one for you by prepending a slash character to the value given by the
SegmentName argument.

UNIX System V Shared Memory

Use the OS_HANDLE keyword to supply an integer val ue containing the system
globa identifier of an existing shared memory segment to attach to the process. If
you do not supply the OS_HANDLE keyword, then SHMMAP creates a new
memory segment. The identifier for this segment is available viathe

GET_OS _HANDLE keyword.

Windows Anonymous Shared Memory

Use the OS_HANDLE keyword to supply a global system name for the mapping
object underlying the anonymous shared memory. If the OS_HANDLE keyword is
not specified, SHMMAP uses the value of the SegmentName argument.

UNIX Memory Mapped Files

The OS_HANDLE keyword has no meaning for UNIX memory mapped filesand is
quietly ignored.

Windows Memory Mapped Files

Use the OS_HANDLE keyword to supply a global system name for the mapping
object underlying the mapped file. Use of the OS_HANDLE will ensure that every

process accessing the shared file will see a coherent view of its contents, and is thus
recommended for Windows memory mapped files. However, if you do not supply the

What's New in IDL 5.6

Chapter 3: New IDL Routines 429

OS_HANDLE handle keyword for a memory mapped file, no global name is passed
to the Windows operating system, and a unique mapping object for the file will be
created.

PRIVATE

Set this keyword to specify that a private file mapping is required. In aprivate file
mapping, any changes written to the mapped memory are visible only to the process
that makes them, and such changes are not written back to the file. This keyword is
ignored unless the FILENAME keyword is also present.

Note
Dueto limitations of the operating system, the PRIVATE keyword is not allowed
under the Windows 9x operating systems (Windows 95, Windows 98,

Windows ME). Windows NT and related systems do not have this limitation.

Note
Under UNIX, the private form of file mapping corresponds to the MAP_PRI VATE
flag to the mmap() system call. Under Windows, the non-private form corresponds
to the PAGE_WRI TECOPY option to the Windows Cr eat eFi | eMappi ng() system
call. When your process alters data within a page of privately mapped memory, the
operating system performs a copy on write operation in which the contents of that
page are copied to a new memory page visible only to your process. This private
memory usually comes from anonymous swap space or the system pagefile. Hence,
private mapped files require more system resources than shared mappings.

Itispossible for some processes to use private mappingsto agiven filewhile others
use a public mapping to the same file. In such cases, the private mappings will see
changes made by the public processes up until the moment the private process itself
makes a change to the page. The pagesize granularity and timing issues between
such processes can make such scenarios very difficult to control. RSI does not
recommend combining simultaneous shared and private mappings to the same file.

SIZE

Set this keyword equal to asi ze vector specifying the type and dimensions to be
associated with the memory segment. The format of a size vector is given in the
description of the SIZE function.

What's New in IDL 5.6 SHMMAP

430 Chapter 3: New IDL Routines

SYSV

Under UNIX, the default form of anonymous memory is Posix shared memory,
(shm_open() and shm unl i nk()). Specify the SY SV keyword to use System V
shared memory (shnget (), shnct | (), and shndt ()) instead. On systemswhere it
isavailable, Posix shared memory is more flexible and has fewer limitations. System
V shared memory is available on al UNIX implementations, and serves as an
alternative when Posix memory does not exist, or when interfacing to exiting non-
IDL softwarethat uses System V shared memory. See “ Types Of Memory Segments’
on page 430 for afull discussion.

TEMPLATE

Set this keyword equal to avariable of the type and dimensions to be associated with
the memory segment.

TYPE

Set this keyword to specify the type code for the memory segment. See the
description of the SIZE function for alist of IDL type codes.

UINT

Set this keyword to specify that the memory segment should be treated as a unsigned
integer array.

ULONG

Set this keyword to specify that the memory segment should be treated as a unsigned
longword integer array.

uL64

Set this keyword to specify that the memory segment should be treated as a unsigned
64-bit integer array.

Types Of Memory Segments

SHMMAP isarelatively direct interface to the shared memory and file mapping
primitives provided by the underlying operating system. The SHMMAP interface
attempts to minimize the differences between these primitives, and for simple shared
memory use, it may not be necessary to fully understand the underlying mechanisms.
For most purposes, however, it is necessary to understand the operating system
primitivesin order to understand how to use SHMMAP properly.

SHMMAP What's New in IDL 5.6

Chapter 3: New IDL Routines 431

UNIX

In modern UNIX systems, the mmap() system call formsthe primary basis for both
file mapping and anonymous shared memory. The existence of System V shared
memory, which is an older form of anonymous shared memory, adds some
complexity to the situation.

UNIX Memory Mapped Files

To memory map afile under UNIX, you open the file using the open() system call,
and then map it using mmap() . Once the file is mapped, you can close thefile, and
the mapping remains in place until explicitly unmapped, or until the process exits or
calsexec() torun adifferent program.

If more than one process maps a file at the same time using the MAP_SHARED flag to
mmap() , then those processes will be able to see each others’ changes. Hence,
memory mapped files are one form of shared memory. Although the requirement for
a scratch file large enough to satisfy the mapping isinconvenient, limitationsin
System V shared memory have led many UNIX programmers to use memory
mapped filesin this way.

UNIX System V Shared Memory

Anonymous shared memory has traditionally been implemented viaan API
commonly referred to as System V IPC. The shnget () functionisused to createa
shared memory segment. The caller does not name the segment. Instead, the
operating system assigns each such segment aunique integer ID when it is created.
Once a shared memory segment exists, the shidt () function can be used to map it
into the address space of any process that knows the identifier. This segment persists
in the OS kernel until it is explicitly destroyed viatheshnct | () function, or until
the system isrebooted. Thisistrue even if there are no processes currently mapped to
the segment. This can be convenient in situations where the need for the shared
memory islong lived, and programs that need it come and go. It also can create a
problem, however, since shared memory segments that are not explicitly destroyed
can cause memory leaks in the operating system. Hence, it isimportant to properly
destroy such segments when they are no longer required.

System V shared memory has been part of UNIX for along time. It isavailable on all
UNIX platforms, and there is alarge amount of existing code that usesit. There are,
however, some limitations on its utility:

* Many systems place extremely small limits on the size allowed for such
memory segments. These limits are often kernel parameters that can be
adjusted by the system administrator. The details are highly system dependent.
Consult your system documentation for details.

What's New in IDL 5.6 SHMMAP

432

SHMMAP

Chapter 3: New IDL Routines

e The caller does not have the option of haming the shared memory segment.
Instead, the operating system assigns an arbitrary number, which means that
processes that want to map such a segment have to have a mechanism for
finding the correct identifier to use before they can proceed. This, in turn,
requires some additional form of interprocess communication.

RSl recommends the use of Posix shared memory instead of System V shared
memory for those platforms that support it and applications that can use it. Under
UNIX, SHMMAP defaults to Posix shared memory to implement anonymous shared
memory. To use System V shared memory, you must specify the SY SV keyword. See
the Examples section below for an example of using System V shared memory.

Posix Shared Memory

Posix shared memory is a newer alternative for anonymous shared memory. It is part
of the UNIX98 standard, and although not all current UNIX systems support it, it will
in time be available on al UNIX systems. Posix shared memory uses the

shm open() andftruncate() system callsto create amemory segment that can
be accessed via afile descriptor. This descriptor isthen used with the mmap() system
call to map the memory segment in the usual manner. The primary difference
between this, and simply using mmap() on ascratch file to implement shared
memory isthat no scratch file is required (the disk space comes from the system
swapspace). As with System V shared memory, Posix shared memory segments exist
in the operating system until explicitly destroyed (using the shm unl i nk() system
cal). Unlike System V shared memory, but like all the other forms, Posix shared
memory allows the caller to supply the name of the segment. This simplifies the
situation in which multiple processes want to map the same segment. One of them
creates it, and the others simply map it, al of them using the same name to reference
it.

Posix shared memory is the default for SHMMAP on all UNIX platforms — even
those that do not yet support it. (To use System V shared memory instead, you must
specify the SY SV keyword.) There are several reasons for making Posix shared
memory the default for all UNIX platforms:

» Toremain UNIX compliant, all platformswill have to implement the UNIX98
standard. Most have, and the remainder are currently in the process of doing
so. We believe that Posix shared memory will be available on all UNIX
systems very soon.

» Having different defaults for different UNIX platforms would cause
unnecessary confusion; the confusion would only increase as platforms added
support for Posix shared memory, causing the platform’s SHMMAP default to
change with later IDL releases. Since in most cases you need to know the

What's New in IDL 5.6

Chapter 3: New IDL Routines 433

underlying mechanism in use, the default should be easy to determine, and
should not change over time.

* Inthelongrun, itisdesirable for the best option to be the default.
Microsoft Windows

Under Microsoft Windows, the Cr eat eFi | eMappi ng() system call formsthe basis
for shared memory as well as memory mapped files. To map afile, you open the file
and then pass the handle for that file to Cr eat eFi | eMappi ng() . To create aregion
of anonymous mapped memory instead of a mapped file, you pass a special file
handle (Oxffffffff)toCreateFil eMappi ng() . Inthiscase, the disk space used
to back the shared memory is taken from the system pagefile.

Cr eat eFi | eMappi ng() acceptsan optional parameter (I pnane), which if present,
isused to give the resulting memory mapping object a system global name. If you
specify such a name, and a mapping object with that name already exists, you will
receive a handle to the existing mapping object. Otherwise,

Cr eat eFi | eMappi ng() creates anew mapping object for the file. Hence, to create
anonymous (no file) shared memory between unrelated processes, IDL calls

Cr eat eFi | eMappi ng() withthe special Oxffffffff filehandle and specifiesa
globa namefor it.

A global name (supplied viathe OS_HANDLE keyword) is the only name by which
an anonymous shared memory segment can be referenced within the system. Global
names are not required for memory mapped files, because each process can create a
separate mapping object and use it to refer to the same file. Although this does allow
the unrelated processes to see each others' changes, their views of the file will not be
coherent (that is, identical). With coherent access, all processes see exactly the same
memory at exactly the same time because they are all mapping the same physical
page of memory. To get coherent access to a memory mapped file, every process
should specify the OS_HANDLE keyword to ensure that they use the same mapping
object. Coherenceis only an issue when the contents of the file are altered; when
using read-only access to a mapped file, you need not be concerned with thisissue.

The Windows operating system automatically destroys a mapping object when the
last process with an open handleto it closes that handle. Destruction of the mapping
object may be the result of an explicit call to O oseHandl! e(), or may involve an
implicit close that happens when the process exits. This differs from the UNIX
behavior for anonymous shared memory, and consequently the benefits and
disadvantages are reversed. The advantage isthat it is not possible to forget to destroy
amapping object, and end up with the operating system holding memory that isno
longer useful, but which cannot be freed. On the other hand, you must ensure that at
least one open handle to the object is open at al times, or the system might free an
object that you intended to use again.

What's New in IDL 5.6 SHMMAP

434

Chapter 3: New IDL Routines

Note
Under Windows, when attaching to an existing memory object by providing the
globa segment name, IDL is not able to verify that the memory segment returned
by the operating system is large enough to satisfy the IDL array specified to
SHMMAPfor itstype and size. If the segment is not large enough, the IDL program
will crash with an illegal memory access exception when it attempts to access
memory addresses beyond the end of the segment. Hence, the IDL user must ensure
that such pre-existing memory segments are long enough for the specified IDL

array.

Reference Counts And Memory Segment Lifecycle

SHMMAP

You can see alist of all current memory segments created with SHMMAP by issuing
the statement

HELP, / SHARED_MEMORY

To access acurrent segment, it must be tied to an IDL variable using the SHMVAR
function. IDL maintains a reference count of the number of variables currently
accessing each memory segment, and does not allow a memory segment to be
removed from the IDL process as long as variables that reference it still exist.

SHMMAP will not allow you to create a new memory segment with the same
SegmentName as an existing segment. You should therefore be careful to pick unique
segment names. One way to ensure that segment names are unigue is to not provide
the SegmentName argument when calling SHMMAP. In this case, SHMMAP will
automatically choose a unique name, which can be obtained using the GET_NAME
keyword.

The SHMUNMAP procedure is used to remove a memory segment from the IDL
session. In addition, it may remove the memory segment from the system. (Whether
the memory segment is removed from the system depends on the type of segment,
and on the arguments used with SHMM AP when the segment wasiinitially attached.)
If no variables from the current IDL session are accessing the segment (that is, if the
IDL-maintained reference count is 0), the segment is removed immediately. If
variablesin the current IDL session are still referencing the segment, the segment is
marked for removal when the last such variable dropsits reference. Once SHMMAP
is caled on a memory segment, no additional callsto SHMVAR are allowed for it
within the current IDL session; this means that a segment marked by SHMUNMAP
as UnmapPending cannot be used for new variables within the current IDL session.

What's New in IDL 5.6

Chapter 3: New IDL Routines 435

Note
IDL has no way to determine whether a process other than itself is accessing a
shared memory segment. Asaresult, it is possible for IDL to destroy a memory
segment that isin use by another process. The specific details depend on the type of
memory segment, and the options used with SHMM AP when the segment was
loaded. When creating applications that use shared memory, you should ensure that
all applications that use the segment (be they instances of IDL or any other
application) communicate regarding their use of the shared memory and actin a
manner that avoids this pitfall.

Examples

Example 1

Create a shared memory segment of 1000000 double-precision data elements, and
then fill it with a DINDGEN ramp:

SHWAP, ' MYSEG , /DOUBLE, 1000000
z = SHWAR(' MYSEG)
z[0] = DI NDGEN(1000000)

Note
When using shared memory, using the explicit subscript of the variable (z, in this
case) maintains the variabl€’'s connection with the shared memory segment. When
not using shared memory, assignment without subscripting is more efficient and is
recommended.

Example 2

Create the same shared memory segment as the previous example, but let IDL choose
the segment name;

SHVMAP, / DOUBLE, DI MENSI ON=[1000000], GET_NAME=segnane
z = SHWAR(segnane)
z[0] = DI NDGEN(1000000)

Example 3

Create the same shared memory segment as the previous example, but use a
temporary file, mapped into IDL’s address space, instead of anonymous shared
memory. The file needs to be the correct length for the data we will be mapping onto
it. We satisfy this need while simultaneously initializing it with the DINDGEN vector
by writing the vector to thefile.

What's New in IDL 5.6 SHMMAP

436 Chapter 3: New IDL Routines

The use of the OS_HANDLE keyword improves performance and correctness under
Windows while being quietly ignored under UNIX:

fil ename = FILEPATH('idl _scratch', /TMP)

OPENW wunit, filename, /GET_LUN

VWRI TEU, unit, DI NDGEN(1000000)

CLCSE, unit

SHVWVAP, /DOUBLE, DI MENSI ON=[1000000], GET_NAME=segnane, $
FI LENAME=f i | enane, OS_HANDLE='i dl _scratch’

z = SHWAR(segnane)

Example 4

Create an anonymous shared memory segment using UNIX System V shared
memory. Use of System V shared memory differs from the other methods in two
ways:

* Thesystemidentifier for the segment is anumber chosen by the system instead
of aname selected by the user.

» With SYSV memory, you have to explicitly indicate whether the operationisa
create operation (no OS_HANDLE keyword) or merely an attach to an
existing segment (OS_HANDLE is present). The other methods create the
segment as needed, and will automatically attach to a memory segment with
the desired operating system handle if it aready exists. The SHMMAP call
does not explicitly have to specify that the segment should be created.

In this example, we will use the type and size of the existing nyvar variable to
determine the size of the memory:

SHWAP, TEMPLATE=nyvar, GET_NAME=segnane, /SYSV, $
GET_OS_HANDLE=oshandl e

In this case, the SY SV keyword forces the use of System V shared memory. The
absence of the OS_HANDLE keyword tells SHMMAP to create the segment, instead
of simply mapping an existing one. In a different IDL session running on the same
machine, if you knew the proper OS_ HANDLE value for this segment, you could
attach to the segment created above as follows:

SHWAP, TEMPLATE=nyvar, GET_NAME=segnane, /SYSV, $
Os_HANDLE=oshandl e

Inthiscase, the OS_HANDLE keyword tells SHMMAP the identifier of the memory
segment, causing it to attach to the existing segment instead of creating a new one.

Version History

Introduced: 5.6

SHMMAP What's New in IDL 5.6

Chapter 3: New IDL Routines 437

See Also

SHMDEBUG, SHMUNMAP, SHMVAR

What's New in IDL 5.6 SHMMAP

438 Chapter 3: New IDL Routines

SHMUNMAP

The SHMUNMAP procedureis used to remove a memory segment previously
created by SHMMAP from the IDL session. In addition, it may remove the memory
segment from the system. (Whether the memory segment is removed from the system
depends on the type of segment, and on the arguments used with SHMMAP when the
segment was initially attached.) If no variables from the current IDL session are
accessing the segment (that is, if the IDL-maintained reference count is 0), the
segment isremoved immediately. If variablesin the current IDL session are till
referencing the segment, the segment is marked for removal when the last such
variable dropsits reference.

During this UnmapPending phase:

» Thesegment still existsin the system, so attemptsto use SHMMAP to create a
new segment with the same SegmentName will fail.

» Additional callsto SHMVAR to attach new variables to this segment will fail.

Note
IDL has no way to determine whether a process other than itself is accessing a
shared memory segment. Asaresult, it is possible for IDL to destroy a memory
segment that isin use by another process. The specific details depend on the type of
memory segment, and the options used with SHMM AP when the segment was
loaded. When creating applications that use shared memory, you should ensure that
all applications that use the segment (be they instances of IDL or any other
application) communicate regarding their use of the shared memory and actin a
manner that avoids this pitfall.

Syntax
SHMUNMAPR, SegmentName
Arguments

SegmentName

A scalar string containing the IDL name for the shared memory segment, as assigned
by SHMMAP.

SHMUNMAP What's New in IDL 5.6

Chapter 3: New IDL Routines

Examples

439

To destroy a memory segment previously created by SHMMAP with the segment

name nyseg:
SHVMUNMAP, ' nyseg'

Version History
Introduced: 5.6
See Also

SHMDEBUG, SHMMAP, SHMVAR

What's New in IDL 5.6

SHMUNMAP

440 Chapter 3: New IDL Routines

SHMVAR

The SHMVAR function creates an IDL array variable that uses the memory from a
current mapped memory segment created by the SHMMAP procedure. Variables
created by SHMVAR are used in much the sasme way as any other IDL variable, and
provide the IDL user with the ability to alter the contents of anonymous shared
memory or memory mapped files.

By default, the variable created by SHMVAR is given the type and dimensions that
were specified to SHMMAP when the memory segment was created. However, this
default can be changed by SHMVAR viaavariety of keywords aswell as viathe D;
arguments. The created array can be of any type except for pointer, object reference,
or string. Structure types are allowed as long as they do not contain any pointers,
object references, or strings.

Syntax

Result = SHMVAR(SegmentName [, Dy, ..., Dg] [, /BYTE] [, /COMPLEX]
[,/DCOMPLEX] [, DIMENSION=value] [,/ DOUBLE] [, /[FLOAT] [, /INTEGER]
[,/L64] [, /LONG] [, SIZE=value] [, TEMPLATE=value] [, TY PE=value] [, /UINT]
[,/UL64] [, /[ULONG])

Return Value

An IDL array variable that uses memory from athe specified mapped memory
segment.

Arguments

SegmentName

A scalar string supplying the IDL name for the shared memory segment, as assigned
by SHMMAP.

D

The dimensions of the result. The D; arguments can be either asingle array
containing the dimensions or a sequence of scalar dimensions. Up to eight
dimensions can be specified. If no dimensions are specified, the parameters specified
to SHMMAP are used.

SHMVAR What's New in IDL 5.6

Chapter 3: New IDL Routines 441

Keywords

BYTE

Set this keyword to specify that the memory segment should be treated as a byte
array.

COMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
single-precision floating-point array.

DCOMPLEX

Set this keyword to specify that the memory segment should be treated as a complex,
double-precision floating-point array.

DIMENSION

Set this keyword equal to avector of 1 to 8 elements specifying the dimensions of the
result. Thisisequivalent to the array form of the D; plain arguments. If no dimensions
are specified, the parameters specified to SHMMAP are used.

DOUBLE

Set this keyword to specify that the memory segment should be treated as a double-
precision floating-point array.

FLOAT

Set this keyword to specify that the memory segment should be treated as a single-
precision floating-point array.

INTEGER

Set this keyword to specify that the memory segment should be treated as an integer
array.

L64

Set this keyword to specify that the memory segment should be treated as a 64-bit
integer array.

What's New in IDL 5.6 SHMVAR

442 Chapter 3: New IDL Routines

LONG

Set this keyword to specify that the memory segment should be treated as alongword
integer array.

SIZE

Set this keyword equal to a size vector specifying the type and dimensions to be
associated with the memory segment. The format of a size vector is given in the
description of the SIZE function. If no dimensions are specified, the parameters
specified to SHMMAP are used.

TEMPLATE

Set this keyword equal to avariable of the type and dimensions to be associated with
the memory segment. If no dimensions are specified, the parameters specified to
SHMMAP are used.

TYPE

Set this keyword to specify the type code for the memory segment. See the
description of the SIZE function for alist of IDL type codes.

UINT

Set this keyword to specify that the memory segment should be treated as a unsigned
integer array.

ULONG

Set this keyword to specify that the memory segment should be treated as a unsigned
longword integer array.

uL64

Set this keyword to specify that the memory segment should be treated as a unsigned
64-bit integer array.

Examples
See the examples given for the SHMMAP procedure.
Version History

Introduced: 5.6

SHMVAR What's New in IDL 5.6

Chapter 3: New IDL Routines 443

See Also

SHMDEBUG, SHMMAP, SHMUNMAP

What's New in IDL 5.6 SHMVAR

444

Chapter 3: New IDL Routines

SKIP_LUN

The SKIP_LUN procedure reads datain an open file and moves the file pointer. It is
useful in situations whereit is necessary to skip over aknown amount of datain afile
without the requirement of having the dataavailablein an IDL variable. SKIP_LUN
can skip over afixed amount of data, specified in bytesor lines of text, or can skip
over the remainder of theinput file from the current position to end of file. Since
SKIP_LUN actually performs an input operation to advance the file pointer, it is not
asefficient as POINT_LUN for skipping over afixed number of bytesin adisk file.
For that reason, use of POINT_LUN is preferred when possible. SKIP_LUN is
especially useful in situations such as:

» Skipping over afixed number of lines of text. Since lines of text can have
variable length, it can be difficult to use POINT_LUN to skip them.

» Skipping data from afilethat isnot aregular disk file (for example, data from
an internet socket).

Syntax

SKIP_LUN, FromUnit, [, Num] [, /EOF] [, /LINES]
[,/ TRANSFER _COUNT=variable]

Arguments

FromUnit

An integer that specifies the file unit for the file in which the file pointer is to be
moved. Datain FromUnit is skipped, starting at the current position of the file
pointer. The file pointer is advanced as dataisread and skipped. The file specified by
FromUnit must be open, and must not have been opened with the RAWIO keyword
to OPEN.

Num

SKIP_LUN

The amount of datato skip. Thisvalueis specified in bytes, unlessthe LINES
keyword is specified, in which case it is taken to be the number of text lines. If Num
is not specified, SKIP_LUN acts asif the EOF keyword has been set, and skips al
datain FromUnit (the source file) from the current position of the file pointer to the
end of thefile.

What's New in IDL 5.6

Chapter 3: New IDL Routines 445

If Numis specified and the source file comes to end of file before the specified
amount of datais skipped, SKIP_LUN issues an end-of-file error. The EOF keyword
altersthis behavior.

Keywords

EOF

Set this keyword to ignore the value given by Num (if present) and instead skip all
data from the current position of the file pointer in FromUnit and the end of thefile.

Note
If EOF is set, no end-of-file error isissued even if the amount of data skipped does
not match the amount specified by Num. The TRANSFER_COUNT keyword can
be used with EOF to determine how much data was skipped.

LINES

Set this keyword to indicate that the Num argument specifies the number of lines of
text to be skipped. By default, the Num argument specifies the number of bytes of
data to skip.

TRANSFER_COUNT

Set this keyword equal to a named variable that will contain the amount of data
skipped. If LINES is specified, this valueis the number of lines of text. Otherwise, it
isthe number of bytes. TRANSFER_COUNT is primarily useful in conjunction with
the EOF keyword. If EOF is not specified, TRANSFER_COUNT will be the same as
the value specified for Num.

Examples

Skip the next 8 lines of text from afile:
SKI P_LUN, FronUnit, 8, /LINES

Skip the remainder of the datain afile, and use the TRANSFER_COUNT keyword
to determine how much data was skipped:

SKI P_LUN, Fronunit, /EOF, TRANSFER_COUNT=n

Skip the remainder of the text linesin afile, and use the TRANSFER_COUNT
keyword to determine how many lines were skipped:

SKI P_LUN, Fronmunit, /EOF, /LINES, TRANSFER_COUNT=n

What's New in IDL 5.6 SKIP_LUN

446 Chapter 3: New IDL Routines

Version History
Introduced: 5.6
See Also

CLOSE, COPY_LUN, EOF, FILE_COPY, FILE_LINK, FILE_MOVE, OPEN,
POINT_LUN, PRINT/PRINTF, READ/READF, WRITEU

SKIP_LUN What's New in IDL 5.6

Chapter 3: New IDL Routines 447

SWAP_ENDIAN_INPLACE

The SWAP_ENDIAN_INPLACE procedure reverses the byte ordering of arbitrary
scalars, arrays or structures. It can make “big endian” number “little endian” and
vice-versa.

Note
The BY TEORDER procedure can be used to reverse the byte ordering of scalars
and arrays (SWAP_ENDIAN_INPLACE aso alows structures).

SWAP_ENDIAN_INPLACE differs from the SWAP_ENDIAN function in that it
altersthe input data in place rather than making a copy as does SWAP_ENDIAN.
SWAP_ENDIAN_INPLACE can therefore be more efficient, if acopy of thedatais
not needed. The pertinent bytes in the input variable are reversed.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
swap_endi an_i npl ace. pro inthel i b subdirectory of the IDL distribution.

Syntax

SWAP_ENDIAN_INPLACE, Variable[, /SWAP_IF_BIG_ENDIAN]
[,/SWAP_IF_LITTLE_ENDIAN]

Arguments

Variable

The named variable—scalar, array, or structure—to be swapped.
Keywords
SWAP_IF_BIG_ENDIAN

If thiskeyword is set, the swap request will only be performed if the platform running
IDL uses“big endian” byte ordering. On little endian machines, the
SWAP_ENDIAN_INPLACE request quietly returns without doing anything. Note
that this keyword does not refer to the byte ordering of the input data, but to the
computer hardware.

What's New in IDL 5.6 SWAP_ENDIAN_INPLACE

448 Chapter 3: New IDL Routines

SWAP_IF_LITTLE_ENDIAN

If thiskeyword is set, the swap request will only be performed if the platform running
IDL uses“little endian” byte ordering. On big endian machines, the
SWAP_ENDIAN_INPLACE request quietly returns without doing anything. Note
that this keyword does not refer to the byte ordering of the input data, but to the
computer hardware.

Examples

Reverse the byte order of A:
SWAP_ENDI AN_I NPLACE, A

Version History
Introduced: 5.6
See Also

BYTEORDER, SWAP_ENDIAN

SWAP_ENDIAN_INPLACE What's New in IDL 5.6

Chapter 3: New IDL Routines 449

TRUNCATE_LUN

The TRUNCATE_LUN procedure truncates the contents of afile (which must be
open for write access) at the current position of the file pointer. After this operation,
all data before the current file pointer remainsintact, and all data following the file
pointer are gone. The position of the current file pointer is not altered.

Syntax
TRUNCATE_LUN, Unity, ..., Unit,
Arguments

Unit,

Scalar or array variables containing the logical file unit numbers of the open filesto
be truncated.

Keywords
None.
Examples

Example 1

Truncate the entire contents of an existing file:

OPENU, unit, 'baddata.dat', /GET_LUN
TRUNCATE_LUN, wunit
FREE_LUN, unit

Example 2

Given an existing file of 10,000 bytes, throw away the final 5,000 bytes, and then
write an additional 2,000 byte array in their place. The resulting file will be 7,000
bytesin length.

OPENU, wunit, 'nydata.dat', /GET_LUN
PO NT_LUN, unit, 5000

TRUNCATE_LUN, wunit

WRI TEU, unit, BYTARR(2000)
FREE_LUN, unit

What's New in IDL 5.6 TRUNCATE_LUN

450 Chapter 3: New IDL Routines

Version History
Introduced: 5.6
See Also

GET_LUN, OPEN, POINT_LUN

TRUNCATE_LUN What's New in IDL 5.6

Chapter 3: New IDL Routines 451

WIDGET_COMBOBOX

The WIDGET_COMBOBOX function creates combobox widgets, which are similar
to droplist widgets. The main difference between the combobox widget and the
droplist widget is that the combobox widget can be created in such away that the text
field is editable, allowing the user to enter avaue that is not on the list.

A combobox widget displays atext field and an arrow button. If the combobox is not
editable, selecting either the text field or the button reveals alist of options from
which to choose. When the user selects a new option from the list, the list disappears
and the text field displays the currently-selected option. This action generates an
event containing the index of the selected item, which ranges from zero to the number
of elementsin the list minus one.

If the combobox is editable, text can be entered in the text box without causing the
list to drop down. This action causes an event in which the index field is set to -1,
allowing you to distinguish this event from list selections.

The text of the current selection isreturned in the STR field of the
WIDGET_COMBOBOX event structure. See “Widget Events Returned by
Combobox Widgets' on page 458 for details.

Note
WIDGET_COMBOBOX is not currently available on Compag True64 UNIX
platforms due to that platform’s lack of support for the necessary Motif libraries.

Syntax

Result = WIDGET_COMBOBOX(Parent [, /DYNAMIC_RESIZE] [, /EDITABLE]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FONT=string]

[, FRAME=valug] [, FUNC_GET_VALUE=string]

[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [, /NO_COPY]

[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]

[, RESOURCE_NAME-=string] [, SCR_XSIZE=width] [, SCR_Y SIZE=height]
[,/SENSITIVE] [, TRACKING_EVENTS] [, UNAME=string] [, UNITS={0| 1|
2}]1 [, UVALUE=value] [, VALUE=value] [, XOFFSET=value] [, XSIZE=value]

[, YOFFSET=value] [, YSIZE=valug])

Return Value

The returned value of this function is the widget ID of the newly-created combobox
widget.

What's New in IDL 5.6 WIDGET_COMBOBOX

452 Chapter 3: New IDL Routines

Arguments

Parent

The widget ID of the parent widget for the new combobox widget.
Keywords

DYNAMIC_RESIZE

Set this keyword to create awidget that resizesitself to fit its new value whenever its
value is changed.

Note
This keyword does not take effect when used with the SCR_XSIZE, SCR_Y SIZE,
XSIZE, or Y SIZE keywords. If one of these keywordsis al so set, the widget will be
sized as specified by the sizing keyword and will never resize itself dynamically.

EDITABLE

Set this keyword to create an editable combobox. If the combobox is editable, users
can enter or modify in the text field. Changes in the combobox text field will cause
combobox events with the INDEX field of the event structure set to -1. The current
text will be* inthe STR field of the event structure.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

FONT

The name of the font to be used by the widget. The font specified isa device font (an
X Windows font on Motif systems; a TrueType or PostScript font on Windows
systems). See “About Device Fonts’ on page 3938 in the IDL Reference Guide for

WIDGET_COMBOBOX What's New in IDL 5.6

Chapter 3: New IDL Routines 453

detail s on specifying names for device fonts. If this keyword is omitted, the default
font is used.

Note
On Microsoft Windows platforms, if FONT is not specified, IDL uses the system
default font. Different versions of Windows use different system default fonts; in
general, the system default font is the font appropriate for the version of Windows
in question.

FRAME

The value of this keyword specifies the width of aframe in units specified by the
UNITS keyword (pixels are the default) to be drawn around the borders of the
widget.

Note
Thiskeyword is only ahint to the toolkit, and may be ignored in some instances.

FUNC_GET VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for awidget.
Compound widgets use this ability to define their values transparently to the user.

GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When agroup leader iskilled, for any reason, al widgetsin the group are
also destroyed.

A given widget can bein morethan one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to awidget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (" *).

What's New in IDL 5.6 WIDGET_COMBOBOX

454 Chapter 3: New IDL Routines

The callback routineis called with the widget identifier asits only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require awidget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywordsto WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique works
well for small data, it can have a significant memory cost when the data being copied
islarge.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_COMBOBOX or the SET_UVALUE keyword to WIDGET_CONTROL),
the variable passed as val ue becomes undefined. Upon a get operation
(GET_UVALUE keyword to WIDGET_CONTROL), the user value of the widget in
guestion becomes undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single callback
procedure. This callback procedure can be removed by setting the routine name to the
null string (' '). The callback routine is called with the widget ID asits only
argument.

PRO_SET VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

WIDGET_COMBOBOX What's New in IDL 5.6

Chapter 3: New IDL Routines 455

RESOURCE_NAME

A string containing an X Window System resource name to be applied to the widget.
See “RESOURCE_NAME” on page 2055 in the IDL Reference Guide for acomplete
discussion of this keyword.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the X SIZE keyword.

SCR_YSIZE

Set this keyword to the desired “ screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the Y SIZE keyword.

SENSITIVE

Set this keyword to control theinitial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When awidget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When awidget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TRACKING_EVENTS

Set this keyword to cause widget tracking events to be issued for the widget
whenever the mouse pointer enters or leaves the region covered by that widget. For
the structure of tracking events, see “ TRACKING_EVENTS’ on page 2061 in the
documentation for WIDGET_BASE in the IDL Reference Guide.

What's New in IDL 5.6 WIDGET_COMBOBOX

456 Chapter 3: New IDL Routines

UNAME

Set this keyword to a string, which is used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO with the

FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe | D of the first widget
with the specified name.

UNITS

Set UNITS equal to O (zero) to specify that all measurements are in pixels (thisisthe
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
Thisvalueis not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. Thiskeyword allows you to set this value when
the widget isfirst created.

If UVALUE is not present, the widget'sinitial user valueis undefined.
VALUE

Theinitia value setting of the widget. The value of acombobox widget is a scalar
string or array of strings that contains the text of the list items (one list item per array
element). Combobox widgets are sized based on the length (in characters) of the
longest item specified in the array of values for the VALUE keyword.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to aplain base widget. You should avoid using this style of widget
programming.

WIDGET_COMBOBOX What's New in IDL 5.6

Chapter 3: New IDL Routines 457

XSIZE

The desired width of the combobox widget area, in units specified by the UNITS
keyword (pixels are the default). M ost widgets attempt to size themselves to fit the
situation. However, if the desired effect is not produced, use this keyword to override
it. This keyword does not control the size of the combobox button or of the dropped
list. Instead, it controls the size around the combobox button and, as such, is not
particularly useful.

YOFFSET

The vertica offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

YSIZE

The desired height of the widget, in units specified by the UNITS keyword (pixels are
the default). Most widgets attempt to size themselves to fit the situation. However, if
the desired effect is not produced, use this keyword to overrideit. This keyword does
not control the size of the combobox button or of the dropped list. Instead, it controls
the size around the combobox button and, as such, is not particularly useful.

Keywords to WIDGET_CONTROL

A number of keywordsto the WIDGET_CONTROL affect the behavior of
combobox widgets. In addition to those keywords that affect all widgets, the
following keywords are particularly useful: COMBOBOX_ADDITEM,
COMBOBOX_DELETEITEM, COMBOBOX_INDEX, DYNAMIC_RESIZE,
GET_VALUE, SET_COMBOBOX_SELECT, SET_VALUE.

Keywords to WIDGET_INFO

A number of keywords to the WIDGET_INFO return information that applies
specifically to combobox widgets. In addition to those keywords that apply to al
widgets, the following keywords are particularly useful: COMBOBOX_GETTEXT,
COMBOBOX_NUMBER, DYNAMIC_RESIZE.

What's New in IDL 5.6 WIDGET_COMBOBOX

458 Chapter 3: New IDL Routines

Widget Events Returned by Combobox Widgets

Pressing the mouse button while the mouse pointer is over an element of a combobox
widget causes the widget to change the text field on the combobox and to generate an
event. The event structure returned by the WIDGET_EVENT function is defined by
the following statement:

{ W DGET_COMBOBOX, |D:0L, TOP:0L, HANDLER: OL, | NDEX:OL, STR ""}

Thefirst three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. This can be used to index the array of names
originally used to set the widget's value. If the event was caused by text changesin an
editable combobox, the INDEX field will be set to -1. If you are using an editable
combobox, it isimportant to check for the value of -1 prior to using the value of the
INDEX field as an index into the array if items. The text of the current selection is
returned in the STR field, which may eliminate the need to use the index field in
many cases.

Note
Platform-specific Ul toolkits behave differently if a combobox widget has only a
single element. On some platforms, selecting that element again does not generate
an event. Events are always generated if the list contains multiple items.

Version History
Introduced: 5.6
See Also

CW_PDMENU, WIDGET_BUTTON, WIDGET_DROPLIST, WIDGET_LIST

WIDGET_COMBOBOX What's New in IDL 5.6

Chapter 3: New IDL Routines 459

WIDGET_TAB

The WIDGET_TAB function is used to create a tab widget. Tab widgets present a
display area on which different pages (base widgets and their children) can be
displayed by selecting the appropriate tab. Thetitles of the tabs are supplied as the
values of the TITLE keyword for each of the tag widget's child base widgets.

For a more detailed discussion of the tab widget, along with examples, see “Using
Tab Widgets’ in Chapter 26 of the Building IDL Applications manual.

Syntax

Result = WIDGET_TAB(Parent [, /ALIGN_BOTTOM |, /ALIGN_CENTER |,
/ALIGN_LEFT |,/ALIGN_RIGHT |, /ALIGN_TOP] [, EVENT_FUNC=string]

[, EVENT_PRO=string] [, FUNC_GET_VALUE=string]

[, GROUP_LEADER=widget_id] [, KILL_NOTIFY =string]

[, LOCATION={0|1]2|3}] [, MULTILINE=O |1 (Windows) or num tabs per row
(Motif)] [, /INO_COPY] [, NOTIFY_REALIZE=string]

[, PRO_SET_VALUE=string] [, SCR_XSIZE=width] [, SCR_Y SIZE=height]

[, /SENSITIVE] [, UNAME=string] [, UNITS={0|1]|2}] [, UVALUE=value]

[, XOFFSET=value] [, XSIZE=value] [, Y OFFSET=value] [, Y SIZE=value])

Return Value
The returned value of this function is the widget ID of the newly-created tab widget.
Arguments

Parent

The widget 1D of the parent for the new tab widget.

Note
Only base widgets can be the parent of atab widget.

Keywords
ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

What's New in IDL 5.6 WIDGET_TAB

460 Chapter 3: New IDL Routines

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be aROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the |eft side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with theright side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

FUNC_GET VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for awidget.
Compound widgets use this ability to define their values transparently to the user.

WIDGET_TAB What's New in IDL 5.6

Chapter 3: New IDL Routines 461

GROUP_LEADER

The widget ID of an existing widget that serves as group |eader for the newly-created
widget. When agroup leader iskilled, for any reason, al widgetsin the group are
also destroyed.

A given widget can bein morethan one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to awidget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (* *). Note that the procedure specified is used only if you are
not using the XMANAGER procedure to manage your widgets.

The callback routineis called with the widget identifier asits only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require awidget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

LOCATION

Set this keyword equal to an integer that specifies which edge of the tab widget will
contain the tabs. The possible values are:

Value Description

0 The tabs are placed along the top of the widget, whichisthe
default behavior.

1 The tabs are placed aong the bottom of the widget.

Table 3-33: LOCATION Keyword Values

What's New in IDL 5.6 WIDGET_TAB

462 Chapter 3: New IDL Routines

Value Description

2 The tabs are placed aong the left edge of the widget. The text
label for each tab is displayed vertically. On Windows
platforms, setting the keyword to this value implies the
MULTILINE keyword.

3 The tabs are placed along the right edge of the widget. The
text label for each tab is displayed vertically. On Windows
platforms, setting the keyword to this value implies the
MULTILINE keyword.

Table 3-33: LOCATION Keyword Values (Continued)
MULTILINE

This keyword controls how tabs appear on the tab widget when all of the tabs do not
fit on the widget in a single row. This keyword behaves differently on Windows and
Motif systems.

Windows

Set this keyword to cause tabs to be organized in a multiline display when the width
of the tabs exceeds the width of the largest child base widget. If possible, IDL will
create tabs that display the full tab text.

If MULTILINE = 0and LOCATION =0 or 1, tabs that exceed the width of the
largest child base widget are shown with scroll buttons, alowing the user to scroll
through the tabs while the base widget stays immabile.

If LOCATION = 1 or 2, amultiline display is always used if the tabs exceed the
height of the largest child base widget.

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that isachild of the tab widget. The text of the tabs (thetitles of the tab
widget’s child base widgets) may be truncated even if the MULTILINE keyword is
set.

Motif

Set this keyword equal to an integer that specifies the maximum number of tabs to
display per row in the tab widget. If this keyword is not specified (or is explicitly set
equal to zero) all tabs are placed in a single row.

WIDGET_TAB What's New in IDL 5.6

Chapter 3: New IDL Routines 463

Note
The width or height of the tab widget is based on the width or height of the largest
base widget that isachild of the tab widget. The text of the tabs (thetitles of the tab
widget’s child base widgets) is never truncated in order to make the tabsfit the
space available. However, tab text may be truncated if the text of asingle tab
exceeds the space available. If MULTILINE is set to any value other than one, some
tabs may not be displayed.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywordsto WIDGET_CONTROL, IDL

makes a second copy of the data being transferred. Although thistechniqueisfine for
small data, it can have a significant memory cost when the data being copied islarge.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_TAB or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. Upon a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single callback
procedure. This callback procedure can be removed by setting the routine name to the
null string (' '). The callback routine is called with the widget ID asits only
argument.

PRO_SET VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

What's New in IDL 5.6 WIDGET_TAB

464 Chapter 3: New IDL Routines

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the Y SIZE keyword.

SENSITIVE

Set this keyword to control theinitial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When awidget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When awidget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

UNAME

Set this keyword to a string, which is used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO with the

FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe | D of the first widget
with the specified name.

WIDGET_TAB What's New in IDL 5.6

Chapter 3: New IDL Routines 465

UNITS

Set UNITS equal to O (zero) to specify that all measurements are in pixels (whichis
the default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
Thisvalueis not used by the widget in any way, but exists entirely for the
convenience of the IDL programmer. Thiskeyword allows you to set this value when
the widget isfirst created.

If UVALUE is not present, the widget'sinitial user valueis undefined.
XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. You should avoid using this style of widget
programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. Thiskeyword isonly a
hint to the toolkit and may be ignored in some situations.

YOFFSET

The vertica offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to aplain base widget. You should avoid using this style of widget
programming.

What's New in IDL 5.6 WIDGET_TAB

466 Chapter 3: New IDL Routines

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. Thiskeyword isonly a
hint to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywordsto the WIDGET_CONTROL affect the behavior of tab
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: BASE_SET _TITLE, SET_TAB_CURRENT,
SET_TAB_MULTILINE.

Keywords to WIDGET_INFO

Some keywordsto the WIDGET_INFO return information that applies specificaly to
tab widgets. In addition to those keywords that apply to al widgets, the following
keywords are particularly useful: TAB_CURRENT, TAB_MULTILINE,
TAB_NUMBER.

Widget Events Returned by Tab Widgets

Tab widgets generate events when anew tab is selected. The event structure returned
by the WIDGET_EVENT function is defined by the following statement:

{WDGET_TAB, |D:0OL, TOP:O0OL, HANDLER: OL, TAB:OL}

ID isthewidget 1D of the button generating the event. TOP isthe widget ID of the
top level widget containing ID. HANDLER contains the widget ID of the widget
associated with the handler routine. TAB returns the zero-based index of the tab
selected.

Version History
Introduced: 5.6

See Also

“Using Tab Widgets” in Chapter 26 of the Building IDL Applications manual

WIDGET_TAB What's New in IDL 5.6

Chapter 3: New IDL Routines 467

WIDGET_TREE

The WIDGET_TREE function is used to create and popul ate a tree widget. The tree
widget presents ahierarchical view that can be used to organize awide variety of data
structures and information.

The WIDGET_TREE function performs two separate tasks: creating the tree widget
and populating the tree widget with nodes (branches and leaves).

For amore detailed discussion of the tree widget, along with examples, see “Using
Tree Widgets” in Chapter 26 of the Building IDL Applications manual.

Syntax

Result = WIDGET_TREE(Parent [, /ALIGN_BOTTOM |, /ALIGN_CENTER |
,/ALIGN_LEFT |, /ALIGN_RIGHT |, /ALIGN_TOP] [, BITMAP=array]
[,/CONTEXT_EVENTS] [, EVENT_FUNC=string] [, EVENT_PRO=string]
[,/EXPANDED] [, /FOLDER] [, FUNC_GET_VALUE=string]

[, GROUP_LEADER=widget_id] [, KILL_NOTIFY=string] [,/ MULTIPLE]
[,/NO_COPY] [, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string]

[, SCR_XSIZE=width] [, SCR_Y SIZE=height] [, /SENSITIVE] [, /TOP]

[, UNAME=string] [, UNITS={0|1|2}] [, UVALUE=value] [, VALUE=string]
[, XOFFSET=valug] [, XSIZE=value] [, Y OFFSET=valug] [, Y SIZE=valug])

Return Value
The returned value of this function is the widget 1D of the newly-created tree widget.
Arguments

Parent
The widget ID of the parent for the new tree widget. Parent can be either a base
widget or atree widget.

* |If Parentisabasewidget, WIDGET_TREE will create atree widget that
contains no other tree widgets. This type of tree widget is referred to as aroot
node.

» If Parent isatree widget, WIDGET_TREE will create a new tree widget
(called anode) in the specified tree widget.

What's New in IDL 5.6 WIDGET_TREE

468 Chapter 3: New IDL Routines

Note
With the exception of the first tree widget created (the root node, whose
Parent is a base widget), atree widget (or node) must be created with the
FOLDER keyword in order to serve as the Parent for other tree widgets.

Keywords
ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be aROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the |eft side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with theright side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

BITMAP

Set this keyword equal to a 16x16x3 array representing an RGB image that will be
displayed next to the node in the tree widget.

CONTEXT_EVENTS

Set thiskeyword to cause context menu events (or simply context events) to be issued
when the user clicks the right mouse button over the widget. Set the keyword to 0
(zero) to disable such events. Context events are intended for use with context-

WIDGET_TREE What's New in IDL 5.6

Chapter 3: New IDL Routines 469

sensitive menus (also known as pop-up or shortcut menus); pass the context event ID
to the WIDGET_DISPLAY CONTEXTMENU within your widget program’s event
handler to display the context menu.

For more on detecting and handling context menu events, see “ Context-Sensitive
Menus’ in Chapter 26 of the Building IDL Applications manual.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from awidget in the widget hierarchy rooted at the
newly-created widget.

EXPANDED

If the tree node being created isafolder (specified by the FOLDER keyword), set this
keyword to cause the folder to be initially displayed expanded, showing al of its
immediate child entries. By default, folders areinitially displayed collapsed.

Thiskeyword isonly valid if the Parent of the tree widget is another tree widget.
FOLDER

Set this keyword to cause the tree node being created to act as afolder (that is, asa
branch of the tree rather than a leaf).

Note
With the exception of the root node (the tree widget whose Parent widget is a base
widget), only tree nodes that have the FOLDER keyword set can act as the parent
for other tree widgets.

Thiskeyword isonly valid if the Parent of the tree widget is another tree widget.
FUNC _GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for awidget.
Compound widgets use this ability to define their values transparently to the user.

What's New in IDL 5.6 WIDGET_TREE

470 Chapter 3: New IDL Routines

GROUP_LEADER

The widget ID of an existing widget that serves as group leader for the newly-created
widget. When agroup leader iskilled, for any reason, al widgetsin the group are
also destroyed.

A given widget can bein morethan one group. The WIDGET_CONTROL procedure
can be used to add additional group associations to awidget. You cannot remove a
widget from an existing group.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (* *). Note that the procedure specified is used only if you are
not using the XMANAGER procedure to manage your widgets.

The callback routineis called with the widget identifier asits only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require awidget ID are
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

MULTIPLE

Set this keyword to enable multiple selection operationsin the tree widget. If
enabled, multiple elementsin the tree widget can be selected at one time by holding
down the Control or Shift key while clicking the left mouse button.

Thiskeyword isonly valid if the Parent of the tree widget is a base widget.
NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywordsto WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique works
well for small data, it can have a significant memory cost when the data being copied
islarge.

WIDGET_TREE What's New in IDL 5.6

Chapter 3: New IDL Routines 471

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copying the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. Upon a set operation (using the UVALUE keyword to
WIDGET_TAB or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. Upon a get operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string containing the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. This callback procedure can be removed by setting the routine
name to the null string (" *). The callback routine is called with the widget ID asits
only argument.

PRO_SET VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

SCR_XSIZE

Set this keyword to the desired screen width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the XSIZE keyword.

SCR_YSIZE

Set this keyword to the desired screen height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword isthe
same as setting the Y SIZE keyword.

What's New in IDL 5.6 WIDGET_TREE

472 Chapter 3: New IDL Routines

SENSITIVE

Set this keyword to control theinitial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When awidget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When awidget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.

Note
Some widgets do not change their appearance when they are made insensitive, but
they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL.

TOP

Set this keyword to cause the tree node being created to be inserted as the parent
node's top entry. By default, new nodes are inserted as the parent node’s bottom
entry.

Thiskeyword isonly valid if the Parent of the tree widget is another tree widget.
UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO with the

FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe | D of the first widget
with the specified name.

UNITS

Set UNITS equal to O (zero) to specify that all measurements are in pixels (whichis
the default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

WIDGET_TREE What's New in IDL 5.6

Chapter 3: New IDL Routines 473

UVALUE

The user value to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
Thisvalueis not used by the widget in any way, but exists entirely for the

convenience of the IDL programmer. Thiskeyword allows you to set this value when
the widget isfirst created.

If UVALUE isnot present, the widget'sinitial user valueis undefined.
VALUE

Set thiskeyword egual to astring containing the text that will be displayed next to the
tree node. If this keyword is not set, the default value Tr ee is used.

Thiskeyword isonly valid if the Parent of the tree widget is another tree widget.
XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of

use relative to a plain base widget. You should avoid using this style of widget
programming.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. Thiskeyword isonly a
hint to the toolkit and may be ignored in some situations.

YOFFSET

The vertica offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to arow or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to aplain base widget. You should avoid using this style of widget
programming.

What's New in IDL 5.6 WIDGET_TREE

474 Chapter 3: New IDL Routines

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. Thiskeyword isonly a
hint to the toolkit and may be ignored in some situations.

Keywords to WIDGET_CONTROL

A number of keywordsto the WIDGET_CONTROL affect the behavior of tree
widgets. In addition to those keywords that affect all widgets, the following keywords
are particularly useful: SET_TREE_BITMAP, SET_TREE_EXPANDED,
SET_TREE _SELECT, SET_TREE _VISIBLE.

Keywords to WIDGET_INFO

Some keywords to the WIDGET _INFO return information that applies specificaly to
tree widgets. In addition to those keywords that apply to all widgets, the following
keywords are particularly useful: TREE_EXPANDED, TREE_SELECT, and
TREE_ROOT.

Widget Events Returned by Tree Widgets

Several variations of the tree widget event structure depend upon the specific event
being reported. All of these structures contain the standard three fields (1D, TOP, and
HANDLER) aswell asan integer TY PE field that indicates which type of structure
has been returned. Programs should always check the type field before referencing
fields that are not present in al tree event structures. The different tree widget event
structures are described below.

Select (TYPE =0)
This structure is returned when the currently selected node in the tree widget

changes:
{ W DGET_TREE_SEL, ID:0L, TOP:OL, HANDLER OL, TYPE 0, CLI CKS:OL}

The CLICK S field indicates the number of mouse-button clicks that occurred when
the event took place. Thisfield contains 1 (one) when the item is selected, or 2 when
the user double-clicks on the item.

WIDGET_TREE What's New in IDL 5.6

Chapter 3: New IDL Routines 475

Expand (TYPE = 1)
This structure is returned when a folder in the tree widget expands or collapses:

{W DGET_TREE_EXPAND, |D: 0L, TOP:0OL, HANDLER OL, TYPE:1, EXPAND: OL}

The EXPAND field contains 1 (one) if the folder expanded or O (zero) if the folder
collapsed.

Context Menu Events

Tree widgets return the following event structure when the user clicks the right
mouse button and the tree widget was created with the CONTEXT_EVENTS
keyword set:

{ W DGET_CONTEXT, |D: 0L, TOP:OL, HANDLER:OL, X:OL, Y:OL}
Thefirst three fields are the standard fieldsfound in every widget event. The X and Y

fields give the device coordinates at which the event occurred, and are measured from
the upper left corner of the tree widget.

Version History
Introduced: 5.6

See Also

“Using Tree Widgets® in Chapter 26 of the Building IDL Applications manual

What's New in IDL 5.6 WIDGET_TREE

476 Chapter 3: New IDL Routines

WIDGET_TREE What's New in IDL 5.6

Chapter 4.

Using the XML Parser
Object Class

The following topics are covered in this chapter:

About XML i 478
Usingthe XML Parser 480
Example: Reading Data Into an Array ... 485

What's New in IDL 5.6

Example: Reading Data Into Structures .. 492

Building Complex Data Structures

499

477

478

Chapter 4: Using the XML Parser Object Class

About XML

XML (eXtensible Markup Language) provides a set of rules for defining semantic
tags that can describe virtually any type of datain asimple ASCII text file. Data
stored in XML-format files is both human- and machine-readable, and is often
relatively easy to interpret either visually or programmatically. The structure of data
stored inan XML fileisdescribed by either a Document Type Definition (DTD) or an
XML schema, which can either be included in the fileitself or referenced from an
external network location.

It is beyond the scope of this manual to describe XML in detail. Numerous third-
party books and electronic resources are available. The following texts may be
useful:

* http://ww. w3. or g — information about many web standards, including
XML related technologies.

* http://ww. w3school s. com— tutorials on all manner of XML-related
topics.

e http://www. saxproj ect. or g — information about the Simple API for
XML, the event-based XML parsing technology used by IDL.

* Brownell, David. SAX2. O'Reilly & Associates, 2002. ISBN: 0-596-00237-8.

» Harold, Eliotte Rusty. XML Bible. IDG Books Worldwide, 1999. ISBN:
0-7645-3236-7

About XML Parsers

There are two basic types of parsersfor XML data:
* tree-based parsers

» event-based parsers.

Tree-based Parsers

About XML

Tree-based parsers map an XML document into a tree structure in memory, alowing
you to select elements by navigating through the tree. Thistype of parser is generally
based on the Document Object Model (DOM) and the tree is often referred to as a
DOM tree.

Tree-based parsers are especially useful when the XML datafile being parsed is
relatively small. Having access to the entire data set at one time can be convenient
and makes processing data based on multiple data values stored in the tree easy.

What's New in IDL 5.6

http://www.w3.org
http://www.w3schools.com
http://www.saxproject.org

Chapter 4: Using the XML Parser Object Class 479

However, if the tree structure is larger than will fit in physical memory or if the data
must be converted into anew (local) data structure before use, then tree-based parsers
can be slow and cumbersome.

Event-based Parsers

Event-based parsers read the XML document sequentially and report parsing events
(such asthe start or end of an element) as they occur, without building an interna
representation of the data structure. The most common examples of event-based
XML parsers usethe Simple API for XML (SAX), and are often referred to asa SAX
parsers.

Event-based parsers allow the programmer to write callback routines that perform an
appropriate action in response to an event reported by the parser. Using an event-
based parser, you can parse very large data files and create application-specific data
structures. The IDLfEXMLSAX object class implements an event-based parser based
on the SAX version 2 API.

What's New in IDL 5.6 About XML

480

Chapter 4: Using the XML Parser Object Class

Using the XML Parser

IDL’'s XML parser object class (IDLffXMLSAX) implements a SAX 2 event-based
parser. The object’s methods are a set of callback routines that are called
automatically when the parser encounters different constituents of an XML
document. For example, when the parser encounters the beginning of an XML
element, it callsthe St ar t El ement method. When the St ar t El enent method
returns, the parser continues.

The IDLffXMLSAX object’s methods are completely generic. As provided, they do
nothing with the items encountered in the XML file. To use the parser object to read
data from an XML file, you must write a subclass of the IDLffXMLSAX class,
overriding the superclass's methods to accomplish your objectives. This requirement
that you subclass the object makes the IDLffXMLSAX class unlike any other object
class supplied by IDL.

For adetailed discussion of IDL object classes, subclassing, and method overriding,
see Chapter 21, “Object Basics’ in Building IDL Applications. For a description of
the parser object class and its methods, see “IDLffXMLSAX object” on page 146.

Subclassing the IDLIffXMLSAX Object Class

Writing a subclass of the IDLfEXMLSAX object classis similar to writing a subclass
of any of IDL’s other object classes. The basic steps are:

1. Defineaclass structure for your subclass, inheriting from the IDLffXMLSAX
object class.

2. Write methods to override the IDLffXMLSAX object class methods as
necessary.

3. Write additional methods required for your application.
4. Create aclass definition routine for your XML parser object.

Let'slook at these stepsindividually:

Define a Class Structure

Every object class has a unique class structure that defines the instance data
contained in the object. (See “ Class Structures’ on page 491 in Building IDL
Applications for details.) When writing your own parser object (a subclass of the
IDLffXMLSAX object), you must first determine what instance data you need your
parser object to contain, and define a class structure accordingly.

Using the XML Parser What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 481

Note
Your parser object’s class structure must inherit from the IDLffXMLSAX class

structure. See “Inheritance” on page 493 in Building IDL Applications for details.

For example, suppose you want to use your parser to extract an array of datafrom an
XML file. You might choose to define your class structure to include an IDL pointer
that will contain the data array. For this case, your class structure definition might
look something like

void = {nyParser, INHERI TS |DLffXM.SAX, ptr:PTR_NEW)}

Within your subclass's methods, this data structure will aways be available via the
implicit sel f argument (see “Method Routines’ on page 506 in Building IDL
Applicationsfor details). Setting thevalue of sel f . pt r within amethod routine sets
the instance data of the object.

In most cases, your class structure definition will be included in aroutine that does
Automatic Sructure Definition (see “ Automatic Class Structure Definition” on
page 492 in Building IDL Applications).

Override Superclass Methods

For your XML parser to do any work, you must override the generic methods of the
IDLffXMLSAX object class. Overriding a method is as simple as defining a method
routine with the same name as the superclass's method. When your parser encounters
an item in the parsed XML file that triggers one of the IDLffXMLSAX methods, it
will look first for amethod of the same name in the definition of your subclass of the
IDLFFXMLSAX object class. See “Method Overriding” on page 510 in Building IDL
Applications for details.

For example, suppose you want your parser to print out the element name of each
XML element it encountersto IDL’s output. You could override the St ar t El ement
method of the IDLffXMLSAX class as follows:

PRO nmyParser:: StartEl ement, URI, Local, Name

PRI NT, Nanme

END

Note
The new method must take the same parameters as the overridden method.

What's New in IDL 5.6 Using the XML Parser

482

Chapter 4: Using the XML Parser Object Class

When your parser encounters the beginning of an XML element, it will look for a
method named St ar t El enent and call that method with the parameters specified
for the IDLff XML SAX::StartElement method. Since your subclass's StartElement
method is found before the superclass's StartElement method, your method is used.

Note
You do not necessarily need to override all of the IDLffXMLSAX object methods.
Depending on your application, it may be sufficient to override four or five of the
superclass's methods. See the parser definitions later in this chapter for examples.

Overriding the IDLffXMLSAX methods is the heart of writing your own XML
parser. To write an efficient parser, you will need detailed knowledge of the structure
of the XML file you want to parse.

See “Example: Reading Data Into an Array” on page 485 and “ Example: Reading
Data Into Structures” on page 492 for examples of how to work with parsed XML
data and return the datain IDL variables.

Write Additional Methods

Depending on your application, you may need to write additional object methods to
work with the instance data retrieved from the parsed XML file. Like the overridden
object methods, any new methods you write have access to the object’s instance data
viatheimplicit sel f parameter.

Create a Class Definition Routine

If you combine your class definition routine with your class's method routinesin a
file, you can use IDL’s Automatic Structure Definition feature to automatically
compile the class routines when an instance of your classis created via the
OBJ_NEW function. Keep the following in mind when creating the . pr o file that
will contain the definition of your class structure and method routines:

» Theroutine that creates your class structure should be named with the
characters“__define” appended to the end of the class name. For example, if
your parser object classis hamed “myParser” and its class structure is the one
described in “Define a Class Structure” on page 480, the routine definition
would be:

PRO nmyParser __defi ne
void = {nyParser, INHERI TS |DLffXM.SAX, ptr:PTR_NEW)}

END

Using the XML Parser What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 483

e The. pr o file should be named after the class structure definition routine. In
this case, the name would be myPar ser __defi ne. pro.

» The class structure definition routine should be the last routinein the . pro
file.

Using Your Parser

Once you have written the class definition routine for your parser, you are ready to
parse an XML file. The process is straightforward:

1. Create an instance of your parser object.

2. Call thePar seFi | e method on your object instance with the name of an XML
file as the parameter.

For example, if your parser object isnamed myPar ser and the object class definition
fileisnamed myPar ser __def i ne. pr o, you could use the following IDL
statements:

xm File = OBJ_NEW ' nyParser')
xmFile -> ParseFile, 'data.xm'

The first statement creates anew XML parser based on your class definition and
places areference to the parser object in the variable xn Fi | e. The second statement
callsthe Par seFi | e method on that object with the filename dat a. xm .

What happens next depends on your application. If your object definition stores
values from the parsed file in the abject’s instance data, you will need some way to
retrieve the valuesinto IDL variables that are accessible outside the object. See
“Example: Reading Data Into an Array” on page 485 and “ Example: Reading Data
Into Structures” on page 492 for examples that return data variables that are
accessible to other routines.

Validation

An XML document is said to be valid if it adheresto a set of constraints set forth in
either a Document Type Definition (DTD) or an XML schema. Both DTDs and
schemas define which elements can be included in an XML file and what values
those elements can assume. XML schemas are anewer technology that is designed to
replace and be more robust than DTDs. In working with existing XML files, you are
likely to encounter both types of validation mechanisms.

What's New in IDL 5.6 Using the XML Parser

484 Chapter 4: Using the XML Parser Object Class

Ensuring that afile contains valid XML helpsin writing an efficient parsing
mechanism. For example, if your validation method specifies that element B can only
occur inside element A, and the XML document you are parsing is known to be valid,
then your parser can assumethat if it encounters element B it isinside element A.

The IDLffXMLSAX parser object can check an XML document using either
validation mechanism, depending on whether aDTD or a schema definition is
present. By default, if either is present, the parser will attempt to validate the XML
document. See SCHEMA_CHECKING (Get, Set) and VALIDATION_MODE (Get,
Set) under “IDLffXMLSAX::Init” on page 167 for details.

Using the XML Parser What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 485

Example: Reading Data Into an Array

This example subclasses the IDLfFXMLSAX parser object class to create an object
classnamed xml _to_array. Thexnl _t o_array object classis designed to read
numerical values from an XML file with the following structure:

<array>

<nunber >0</ nunber >
<nunber >1</ nunber >

</array>
and place those valuesinto an IDL array variable.
Note
Thisexample is avery simple example. It is designed to illustrate how an event-
based XML parser is constructed using the IDLffXMLSAX object class. An

application that reads real datafrom an XML file will most likely be quite a bit
more complicated.

Creating the xml_to_array Object Class

In order to read the XML file and return an array variable, we will need to create an
object class definition that inherits from the IDLFfXMLSAX object class, and
override the following superclass methods: | ni t , O eanup, St art Docunent ,
Char act ers, Start El enent, and EndEl enent . Since this example does not
retrieve data using any of the other IDLffXMLSAX methods, we do not need to
override those methods. In addition, we will create a new method that allows us to
retrieve the array data from the object instance data.

Note
Thisexampleisincluded in thefilexm _to_array__defi ne. pro inthe
exanpl es/ dat a_access subdirectory of the IDL distribution.

What's New in IDL 5.6 Example: Reading Data Into an Array

486 Chapter 4: Using the XML Parser Object Class

Object Class Definition

The following routine is the definition of thexm _t o_ar r ay object class:
PRO xm _to_array__define

void = {xm _to_array, $
| NHERI TS | DLf f XMLSAX, $
charBuffer:'', $
pArray: PTR_NEW)}

END

The following items should be considered when defining this class structure:

» Thestructure definition uses the INHERI TS keyword to inherit the object class
structure and methods of the IDLFffXMLSAX object.

» Thechar Buf f er structurefield is set equal to an empty string.

» ThepArray structure field is set equal to an IDL pointer. We will use this
pointer to store the numerical array data we retrieve.

» Theroutine nameis created by adding the string “__defi ne” (hote the two
underscore characters) to the class name.

Why do we store the array data in a pointer variable? Because the fields of a named
structure (xm _t o_ar r ay, in this case) must always contain the same type of dataas
when that structure was defined. Since we want to be able to add values to the data
array aswe parsethe XML file, we will need to extend the array with each new value.
If we began by defining the size of the array in the structure variable, we would not
be able to extend the array. By holding the data array in a pointer, we can extend the
array without changing the format of thexm _t o_ar r ay object class structure.

Note
Although we describe this routinefirst here, thexm _t o_array__defi ne routine
must bethelast routineinthexm to_array__define. pro file.

Init Method

Thel ni t methodiscalledwhentheanxm _t o_array parser object is created by a
call to OBJ_NEW. The following routine is the definition of the | ni t method:

FUNCTION xm _to_array::Init

sel f. pArray = PTR_NEW/ALLOCATE_HEAP)
RETURN, self -> IDLffxm sax::1nit()
END

Example: Reading Data Into an Array What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 487

We do two thingsin this method:
* Weinitialize the pointer in the pAr r ay field of the class structure variable.

Note
Within amethod, we can refer to the class structure variable with the implicit
parameter sel f . Remember that sel f isactually areference to the
xm _t o_array object instance.

» Thereturn value from thisfunction isthe return value of the superclass'si ni t
method, called on the sel f object reference.

Note
The initialization task (setting the value of the pAr r ay field) is performed before
calling the superclass's| ni t method.

See “IDLfEXMLSAX::Init” on page 167 for details on the method we are overriding.
Cleanup Method

The Cl eanup method is called when thexm _t o_ar r ay parser object is destroyed
by acall to OBJ DESTROY. Thefollowing routine is the definition of the Cl eanup
method:

PRO xm _to_array:: d eanup
| F (PTR_VALI D(sel f.pArray)) THEN PTR_FREE, self.pArray
END
All we do inthe O eanup method isto release the pAr r ay pointer, if it exists.

See “IDLffXMLSAX::Cleanup” on page 152 for details on the method we are
overriding.

Characters Method

The Char act er s method is called whenthexm _t o_ar r ay parser encounters
character data inside an element. The following routine is the definition of the
Char act er s method:

PRO xml _to_array::characters, data
sel f.charBuffer = self.charBuffer + data

END

What's New in IDL 5.6 Example: Reading Data Into an Array

488 Chapter 4: Using the XML Parser Object Class

As it parses the character datain an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current charactersto the
char Buf f er field of the object’s instance data structure.

See “IDLffXMLSAX::Characters’ on page 151 for details on the method we are
overriding.
StartDocument Method

The St ar t Document method is called whenthexm _t o_ar r ay parser encounters
the beginning of the XML document. The following routine is the definition of the
St art Document method:

PRO xm _to_array:: StartDocunent

| F (N_ELEMENTS(*sel f.pArray) GI 0) THEN $
void = TEMPORARY(*sel f. pArray)

END

Here, we check to seeif the array pointed at by the pAr r ay pointer contains any data.
Since we are just beginning to parse the XML document at this point, it should not
contain any data. If datais present, we reinitiaize the array using the TEMPORARY
function.

Note
Since pAr r ay isapointer, we must use dereferencing syntax to refer to the array.

See“IDLfFXMLSAX::StartDocument” on page 176 for details on the method we are
overriding.

StartElement Method

The St ar t El ement method is called whenthexm _t o_ar r ay parser encounters
the beginning of an XML element. The following routine is the definition of the
St art El enent method:

PRO xml _to_array::startEl ement, URI, local, strName, attr, value

CASE st rNane OF
"array": BEG N
| F (N_ELEMENTS(*sel f.pArray) GI 0) THEN $
void = TEMPORARY(*sel f. pArray);; clear out nenory
END
"nunber" : BEGQ N
self.charBuffer ="'
END

Example: Reading Data Into an Array What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 489

ENDCASE

END

Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

» If theelementisan <ar r ay> element, we check to seeif the array pointed at
by the pAr r ay pointer is empty. Since we are just beginning to read the array
data at this point, there should be no data. If data already exists, we reinitialize
the array using the TEMPORARY function.

» If theelementisa<nunber > element, we reinitialize the char Buf f er field.
Sincewe are just beginning to read the number data, nothing should bein the
buffer.

See “IDLfIXMLSAX::StartElement” on page 178 for details on the method we are
overriding.

EndElement Method

The EndEl enent method is called whenthexm _t o_ar r ay parser encounters the
end of an XML element. The following routine is the definition of the EndEl ement
method:

PRO xm _to_array:: EndEl ement, URI, Local, strName

CASE st rName OF
"array":
"nunber": BEG N
idata = FI X(self.charBuffer);
| F (N_ELEMENTS(*sel f. pArray) EQ 0) THEN $
*self.pArray = iData $
ELSE $
*self.pArray = [*sel f. pArray, i Data]
END
ENDCASE

END

Aswiththe St ar t El enent method, we first check the name of the element we have
encountered, and use a CA SE statement to branch based on the element name:

» If theelement isan <ar r ay> element, we do nothing.

» If theelementisa<nunber > element, we must get the data stored in the
char Buf f er field of the instance data structure and placeit in the array:

» First, we convert the string data in the char Buf f er into an IDL integer.

What's New in IDL 5.6 Example: Reading Data Into an Array

490 Chapter 4: Using the XML Parser Object Class

* Next, we check to seeif the array pointed at by pAr ray isempty. If itis
empty, we simply set the array equal to the data value we retrieved from
thechar Buf fer.

» If thearray pointed at by pArr ay isnot empty, we redefine the array to
include the new dataretrieved from the char Buf f er .

See “IDLffXMLSAX::EndElement” on page 158 for details on the method we are
overriding.

Note
In both the St ar t El enent and EndEl enent methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML file's DTD or schema (in this case, the only elements are
<arr ay> and <nunber >). We do not need an EL SE clause in the CASE statement.
If an unknown element isfound in the XML file, the parser will report avalidation
error.

GetArray Method

The Get Ar r ay method allows usto retrieve the array data stored in the pAr r ay
pointer variable. The following routine is the definition of the Get Ar r ay method:

FUNCTI ON xm _to_array: : GetArray

| F (N_ELEMENTS(*sel f.pArray) GI 0) THEN $
RETURN, *self.pArray $
ELSE RETURN , -1

END

Here, we check to see whether the array pointed at by pAr r ay containsany data. If it
does contain data, we return the array. If the array contains no data, we return the
value- 1.

Using the xml_to_array Parser

Toseethexm _t o_array parser in action, you can parse the filenum array. xm ,
found in the exanpl es/ dat a subdirectory of the IDL distribution. This

num array. xn file contains the fragment of XML like the one shown in the
beginning of this section, and includes 20 extra<nunber > elements. The

num array. xm fileasoincludesaDTD describing the structure of thefile.

Example: Reading Data Into an Array What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class

Enter the following statements at the IDL command line:

xm Cbj = OBI_NEW' xm _to_array')

xm File = FI LEPATH(' num array.xm ', $
SUBDI RECTCRY = [' exanples', 'data'])

xm Qbj -> ParseFile, xmFile

nyArray = xm Cbj -> GetArray()

OBJ_DESTROY, xni Obj

HELP, nyArray

PRI NT, nyArray

IDL prints:

MYARRAY | NT = Array[20]
0O 1 2 3 4 5 6 7 8 9 10
12 13 14 15 16 17 18 19

11

491

What's New in IDL 5.6 Example: Reading Data Into an Array

492 Chapter 4: Using the XML Parser Object Class

Example: Reading Data Into Structures

This example subclasses the IDLfFXMLSAX parser object class to create an object
classnamed xm _to_struct.Thexm _to_struct objectclassisdesignedto read
data from an XML file with the following structure:

<Sol ar _Syst e
<Pl anet NAME=' Mercury' >
<Orbit UNITS= kilonmeters' TYPE='ul ong64' >579100000</ Orbit >
<Period UNI TS='days' TYPE='float' >87.97</Period>
<Satellites TYPE="int'>0</Satellites>
</ Pl anet >

</ Sol ar _Syst en»>

and place those valuesinto an IDL array containing one structure variable for each
<Pl anet > element. We use a structure variable for each <Pl anet > element so we
can capture data of several datatypesin asingle place.

Note
While this example is more complicated than the previous example, it is still rather
simple. It is designed to illustrate a method whereby more complex XML data
structures can be represented in IDL.

Creating the xml_to_struct Object Class

To read the XML file and return a structure variable, we will need to create an object
class definition that inherits from the IDLffXMLSAX aobject class, and override the
following superclass methods: | ni t , Char act ers, St art El ement , and

EndEl enent . Since this example does not retrieve data using any of the other
IDLfFXMLSAX methods, we do not need to override those methods. In addition, we
will create anew method that allows us to retrieve the structure data from the object
instance data.

Notice that the elements of the XML datafile include attributes. While we will
retrieve and use some of the attribute data from the file, we will ignore some of it.

Note
When parsing an XML datafile, you can pick and choose the data you wish to pull
into IDL. This ability to selectively retrieve data from the XML file is one of the
great advantages of an event-based parser over atree-based parser.

Example: Reading Data Into Structures What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 493

Note

Thisexampleisincluded in thefilexm _t o_struct__defi ne. pro inthe
exanpl es/ dat a_access subdirectory of the IDL distribution.

Object Class Definition

The following routine is the definition of thexm _t o_struct object class:

PRO xm _to_struct__define

void = {PLANET, NAME: "", Orbit: Oull, period:0.0, Mons:O0}
void = {xm _to_struct, $

| NHERI TS | DLf f XMLSAX, $

CharBuffer:"", $

pl anet Num 0, $

current Pl anet : { PLANET}, $

Planets : MAKE_ARRAY(9, VALUE = {PLANET})}

END

The following items should be considered when defining this class structure:

Before creating the object class structure, we define a structure named
PLANET. Wewill usethe PLANET structureto store datafrom the <Pl anet >
elements of the XML file.

The object class structure definition usesthe | NHERI TS keyword to inherit the
object class structure and methods of the IDLffXMLSAX object.

Thechar Buf f er structure field is set equal to astring value. We will use this
field to accumulate character data stored in XML elements.

Thepl anet Numstructurefield isset equal to an integer value. We will usethis
field to keep track of which array element we are currently populating.

Thecurrent Pl anet structure field is set equal to a PLANET structure.

The Pl anet s structure field is set equal to a nine-element array of PLANET
structures.

The routine name is created by adding the string “__def i ne” (note the two
underscore characters) to the class name.

What's New in IDL 5.6 Example: Reading Data Into Structures

494 Chapter 4: Using the XML Parser Object Class

We have explicitly defined our Pl anet s structure field as a nine-element array of
PLANET structures, which we can do because we know exactly how many

<Pl anet > elementswill beread from our XML file. Specifying the exact size of the
data array in the class structure definition is very efficient (since we create the array
only once) and eliminates the need to free the pointer in the Cl eanup method.
However, it has the following consequences:

* Wemust explicitly keep track of the index of the array element we are
populating, and increment it after we have finished with a given element (see
the EndEl ement method below).

* Wemust know in advance how many elements the array will hold. If the size
of the final array isunknown, it is more efficient to use a pointer to an array, as
we did in the previous example, and allow the array to grow as elements are
added. See “Building Complex Data Structures’ on page 499 for additional
discussion of ways to configure the instance data structure.

Note
Although we describe this routine herefirst, thexm _to_struct __define
routine must be the last routineinthexm to_struct__defi ne. pro file.

Init Method
Thel ni t method iscalled whenthean xm _t o_struct parser object is created by
acall to OBJ_NEW. Thefollowing routine is the definition of the I ni t method:
FUNCTI ON xm _to_struct::Init

sel f. planetNum = 0
RETURN, self -> |DLffXMSAX: :lnit()

END
We do two thingsin this method:

* Weinitialize the pl anet Numfield with the value of zero. We will increment
this value as we populate the Pl anet s array.

Note
Within amethod, we can refer to the class structure variable with the implicit
parameter sel f . Remember sel f isactually areferenceto the
xm _to_struct objectinstance.

» Thereturn value from thisfunction isthe return value of the superclass'si ni t
method, called on the sel f object reference.

Example: Reading Data Into Structures What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 495

Note
We perform our own initialization task (setting the value of the pl anet Numfield)
before calling the superclass's| ni t method.

See “IDLfEXMLSAX::Init” on page 167 for details on the method we are overriding.
Characters Method

The Char act er s method is called whenthexm _t o_st ruct parser encounters
character data inside an element. The following routine is the definition of the
Char act er s method:

PRO xml _to_struct::characters, data
sel f.charBuffer = self.charBuffer + data

END

As it parses the character datain an element, the parser will read characters until it
reaches the end of the text section. Here, we simply add the current charactersto the
char Buf f er field of the object’s instance data structure.

See “IDLffXMLSAX::Characters’ on page 151 for details on the method we are
overriding.
StartElement Method

The St ar t El ement method is called whenthexm _t o_st ruct parser encounters
the beginning of an XML element. The following routine is the definition of the
St art El ement method:

PRO xm _to_struct::startHenent, UR, local, strName, attrNane, attrVal ue

CASE st rName OF

"Sol ar _Syst ent': ; Do not hi ng
"Planet" : BEG N
sel f.current Pl anet = {PLANET, "", Oull, 0.0, 0}
sel f.current Pl anet. Name = attrVal ue[0]
END
"Orbit" : self.charBuffer ="'
"Period" : self.charBuffer ="'
"Moons" : self.charBuffer ="'
ENDCASE
END

What's New in IDL 5.6 Example: Reading Data Into Structures

496 Chapter 4: Using the XML Parser Object Class

Here, we first check the name of the element we have encountered, and use a CASE
statement to branch based on the element name:

» Iftheelementisa<Sol ar _Syst en» element, we do nothing.
» If theelementisa<Pl anet > element, we do the following things:

» Setthevalue of thecurrent Pl anet field of thesel f instance data
structure equal to aPLANET structure, setting the values of the structure
fields to zero values.

» Set the value of the Nane field of the PLANET structure held in the
current Pl anet field equa to the value of the Nare attribute of the
element. Thisfield contains the name of the planet whose data we are
reading.

 [ftheelementisan <Or bi t >, <Peri od>, or <Mbons> element, wereinitialize
the value of the char Buf f er field of thesel f instance data structure.

See “IDLfIXMLSAX::StartElement” on page 178 for details on the method we are
overriding.

EndElement Method

The EndEl ement methodiscalled whenthexm _t o_struct parser encountersthe
end of an XML element. The following routine is the definition of the EndEl ement
method:

PRO xm _to_struct:: EndEl ement, URI, Local, strNane

CASE st rNane of
"Sol ar _Syst ent':
"Planet": BEG N
sel f.Planets[sel f.planetNum = self.currentPl anet
sel f.planetNum = sel f.planetNum + 1

END
"Orbit" : self.currentPlanet.Orbit = self.charBuffer
"Period" : self.currentPlanet.Period = self.charBuffer
"Moons" : sel f.currentPl anet. Mons= self.charBuffer
ENDCASE
END

Example: Reading Data Into Structures What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 497

Aswiththe St ar t El enent method, we first check the name of the element we have
encountered, and use a CA SE statement to branch based on the element name:

» Iftheelementisa<Sol ar _Syst en» element, we do nothing.

» If theelementisa <Pl anet > element, we set the element of the Pl anet s
array specified by pl anet Numegual to the PLANET structure contained in
current Pl anet . Then, we increment the pl anet Numcounter.

e |ftheelementisan <Or bit >, <Peri od>, or <Satel | i t es> element, we
placethe valuein the char Buf f er field into the appropriate field within the
PLANET structure contained in cur r ent Pl anet .

See “IDLffXMLSAX::EndElement” on page 158 for details on the method we are
overriding.

Note
In both the St ar t El enent and EndEl enent methods, we rely on the validity of
the XML data file. Our CASE statements only need to handle the element types
described in the XML filesDTD or schema. We do not need an EL SE clause in the
CASE statement. If an unknown element is found in the XML file, the parser will
report avalidation error.

GetArray Method
The Get Ar r ay method allows usto retrieve the array of structures stored in the
Pl anet s variable. The following routine is the definition of the Get Ar r ay method:
FUNCTI ON xm _to_struct:: GetArray

I F (sel f.planetNum EQ 0) THEN $
RETURN, -1 $
ELSE RETURN, self. Pl anets[0:self.planet Num 1]

END

Here, we check to see whether the pl anet Numcounter has been incremented. If it
has been incremented, we return as the number of array elements specified by the
counter. If the counter has not been incremented (indicating that no data has been
stored in the array), we return the value - 1.

What's New in IDL 5.6 Example: Reading Data Into Structures

498 Chapter 4: Using the XML Parser Object Class

Using the xml_to_struct Parser

Toseethexm _to_struct parserin action, you can parsethefilepl anets. xn ,
found in the exanpl es/ dat a subdirectory of the IDL distribution. The

pl anets. xm file contains the fragment of XML like the one shown at the
beginning of this section, and includes a <Pl anet > element for each planet in the
solar system. The pl anet s. xm fileasoincludesa DTD describing the structure of
thefile.

Enter the following statements at the IDL command line:

xm Cbj = OBI_NEW' xml _to_struct')

xm File = FI LEPATH(' pl anets.xm ', $
SUBDI RECTCRY = [' exanples', 'data'])

xm Qbj -> ParseFile, xmFile

pl anets = xml Obj -> GetArray()

OBJ_DESTROY, xni Obj

The variable pl anet s now holds an array of PLANET gructures, one for each
planet. To print the number of moons for each planet, you could use the following

IDL statement:

FOR i = 0, (N_ELEMENTS(planets.Nane) - 1) DO $
PRI NT, planets[i].Name, planets[i].Mons, $
FORMAT = ' (A7, " has ", 12, " noons")'

IDL prints:

Mercury has 0O noons

Venus has 0 noons

Earth has 1 noons

Mar s has 2 noons

Jupi ter has 16 npbons
Saturn has 18 noons
Uranus has 21 npons
Neptune has 8 noons
Pl uto has 1 noons

To view all the information about the planet Mars, you could use the following IDL
statement:

HELP, planets[3], /STRUCTURE

IDL prints:
** Structure PLANET, 4 tags, |ength=32, data | ength=26:
NAMVE STRI NG "' Mars'
ORBI T ULONG64 227940000
PERI OD FLOAT 686. 980
MOONS I NT 2

Example: Reading Data Into Structures What's New in IDL 5.6

Chapter 4: Using the XML Parser Object Class 499

Building Complex Data Structures

Few limitations exist regarding the complexity of the data structures that can be
represented in an XML datafile. Writing a parser to read data from such complex
structures into IDL can be achallenge. If you are designing a parser to read a very
complex or deeply nested XML file, keep the following conceptsin mind.

Use Dynamically Sized Arrays if Necessary

If you don’t know the final size of your data array, or if the size of the array will
change, store the dataarray in an IDL pointer in the instance data structure. This
technique allows you to change the size of the data array without changing the
definition of the instance data structure. The downside of extending the data array in
this manner is performance. Each time the array is extended, IDL must hold two
copies of the entire array in memory. If the array becomes large, this duplication can
cause performance problems.

In “Example: Reading Data Into an Array” on page 485, we extended our data array
aswe added each element despite the fact that we knew the number of data elements.
We used a pointer to illustrate the technique, and to make it clear that if you use
pointers to store your instance data, you must free the pointersin your subclass's

Cl eanup method.

Use Fixed-Size Arrays When Possible

If you will be building alarge data array, and you know in advance how many
elementsit will contain, create the array when defining the class data structure and
use array indexing to place data in the appropriate el ements. Using afixed-size array
eliminates the need to copy the full array each time it is extended, and can lead to
noticeabl e performance improvements when large arrays are involved.

In “Example: Reading Data Into Structures’ on page 492, we illustrated the
technique of using a pre-defined array to store our instance data.

Using Nested Structures

If your data structure is complex, you may beinclined to represent your data as a set
of nested IDL structure variables. While nesting structure variables can help you
create a data structure that emulates the structure of your XML file, deeply nested
structures can make your code more difficult to create and maintain. Consider storing
datain severa arrays of structures rather than a single, deeply-nested structure.

If you have a good reason to create nested structures, and also need to extend them
dynamically, you should use the CREATE_STRUCT function.

What's New in IDL 5.6 Building Complex Data Structures

500 Chapter 4: Using the XML Parser Object Class

The same caveats apply to extending a structure with CREATE_STRUCT asapply to
extending an array. With large datasets, the process of duplicating the structures may
cause performance problems.

Building Complex Data Structures What's New in IDL 5.6

Index

Numerics
64-bit IDL, support for, 31

A

array operators
LA_CHOLDC, 314
LA_CHOLMPROVE, 317
LA_CHOLSOL, 320
LA_DETERM, 323
LA_EIGENPROBLEM, 325
LA_EIGENVEC, 337
LA_ELMHES, 341
LA_HQR, 347
LA_INVERT, 350
LA_LUDC, 362
LA_LUMPROVE, 365

What's New in IDL 5.6

LA_LUSOL, 368
LA_SVD, 371
LA_TRIDC, 375
LA_TRIQL, 383
LA_TRIRED, 386
LA_TRISOL, 388

arrays
median value, 25
product of elements, 23
subscripts

B

defining subscript ranges, 26
out-of-range errors, 30

byte order
reversing, 447

501

502

C

Cartesian
converting from lat/lon, 391
converting to lat/lon, 412
Cholesky decomposition
constructing (LA_CHOLDC), 314
constructing (LA_CHOLMPROVE), 317
constructing (LA_CHOLSOL), 320
clipping planes
maximum number, 15
support for, 15
COM
argument skipping support, 43
data type support, 44
default value support, 43
function return value support, 43
optional argument support, 43
using COM objectsin IDL, 58
using | DLcoml Dispatch object, 43
combobox widgets, 451
comments
commenting blocks of code, 39
compute
eigenvalues, 325
constructing
diagonal matrices, 193
COPY _LUN procedure, 190
copying
data between files, 190
files, 196
multiple code lines, 38
creating
symbolic links, 203
cursor
creating custom, 18
registering, 419

Index

D

debugging
shared memory, 421
decomposition
Cholesky (LA_CHOLDC), 314
Cholesky (LA_CHOLMPROVE), 317
Cholesky (LA_CHOLSOL), 320
LU
LA_LUDC procedure, 362
LA_LUSOL function, 368
LA_TRIDC function, 375
singular value, 371
determinant of a square matrix
LA DETERM, 323
DIAG_MATRIX function, 193
diagonal matrix, 193
DOM (Document Object Model) see XML
droplist widgets returned events, 458

E

eigenvalues
computing, 325
Hessenberg array, returning (LA_HQR), 347
symmetric array (LA_EIGENQL), 331
eigenvectors
non-symmetric array (LA_EIGENVEC), 337
eigenvectors (LA_EIGENQL), 331
events returned by
droplist widgets, 458
tab widgets, 466
tree widgets, 474
Extensible Markup Language see XML

E

file

symbolic links, 203, 209
file pointer

moving, 444

What's New in IDL 5.6

FILE_COPY procedure, 196
FILE_LINES function, 200
FILE_LINK procedure, 203
FILE_MOVE procedure, 206
FILE_READLINK function, 209
FILE_SAME function, 211
files

accessing compressed, 31

accessing large files, 30

comparing, 211

copying, 196

formats

ITIFF, 33
moving, 206
new file handling routines, 28

G

Gauss-Markov linear model, 344

H

H5 BROWSER function, 214
H5_CLOSE procedure, 217

H5 _GET_LIBVERSION function, 218
H5_OPEN procedure, 219

H5 PARSE function, 220

H5A_CL OSE procedure, 225
H5A_GET_NAME function, 226
H5A_GET_NUM_ATTRS function, 227
H5A_GET_SPACE function, 228
H5A_GET_TYPE function, 229
H5A_OPEN_IDX function, 230
H5A_OPEN_NAME function, 231

H5A _READ function, 232

H5D_CL OSE procedure, 233
H5D_GET_SPACE function, 234
H5D_GET_STORAGE_SIZE function, 235
H5D GET_TYPE function, 236
H5D_OPEN function, 237

What's New in IDL 5.6

503

H5D READ function, 238

H5F_CLOSE procedure, 241

H5F_IS_HDF5 function, 242

H5F_OPEN function, 243

H5G_CLOSE procedure, 244

H5G_GET_COMMENT function, 245

H5G_GET_LINKVAL function, 246

H5G_GET_MEMBER_NAME function, 247

H5G_GET_NMEMBERS function, 249

H5G_GET_OBJNFO function, 250

H5G_OPEN function, 252

H51 GET_TY PE function, 253

H5R_DEREFERENCE function, 254

H5R_GET_OBJECT_TY PE function, 255

H5S_CL OSE procedure, 257

H5S COPY function, 258

H5S CREATE_SIMPLE function, 259

H5S GET_SELECT BOUNDS function, 261

H5S GET_SELECT_ELEM_NPOINTS func-
tion, 262

H5S GET_SELECT_ELEM_POINTLIST
function, 263

H5S GET_SELECT_HYPER_BLOCKLIST
function, 265

H5S GET_SELECT_HYPER_NBLOCKS
function, 267

H5S GET_SELECT_NPOINTS function, 268

H5S GET_SIMPLE_EXTENT_DIMSfunc-
tion, 269

H5S GET_SIMPLE_EXTENT_NDIMS func-
tion, 270

H5S GET_SIMPLE EXTENT_NPOINTS
function, 271

H5S GET_SIMPLE_EXTENT_TY PE func-
tion, 272

H5S IS SIMPLE function, 273

H5S_OFFSET_SIMPLE procedure, 274

H5S SELECT_ALL procedure, 275

H5S SELECT_ELEMENTS procedure, 276

H5S SELECT_HYPERSLAB procedure, 278

H5S_SELECT_NONE procedure, 280

Index

504

H5S SELECT VALID function, 281
H5T_CLOSE procedure, 282
H5T _COMMITTED function, 283
H5T_COPY function, 284
H5T_EQUAL function, 285
H5T GET_ARRAY_DIMS function, 286
H5T GET_ARRAY_NDIMS function, 287
H5T GET_CLASS function, 288
H5T _GET_CSET function, 290
H5T _GET_EBIAS function, 291
H5T _GET_FIELDS function, 292
H5T _GET_INPAD function, 294
H5T GET_MEMBER_CLASS function, 295
H5T GET_MEMBER_NAME function, 297
H5T GET_MEMBER_OFFSET function, 298
H5T GET_MEMBER_TY PE function, 299
H5T GET_NMEMBERS function, 300
H5T_GET_NORM function, 301
H5T GET_OFFSET function, 302
H5T _GET_ORDER function, 303
H5T _GET_PAD function, 304
H5T_GET_PRECISION function, 305
H5T _GET_SIGN function, 306
H5T_GET_SIZE function, 307
H5T _GET_STRPAD function, 308
H5T GET_SUPER function, 309
H5T_IDLTY PE function, 310
H5T MEMTY PE function, 312
H5T_OPEN function, 313
HDF5 files

accessing, 34

browsing, 35

viewing, 214
Hessenberg array

eigenvalues (LA_HQR), 347

returning (LA_ELMHES), 341
Hessenberg array or matrix (LA_ELMHES),

341

Index

/

IDL GUIBuUilder
enhancements, 41

IDLcomlDispatch
using, 43

IDLfEXMLSAX
AttributeDecl method, 149
Characters method, 151
class, 146
Cleanup method, 152
Comment method, 153
ElementDecl method, 154
EndCDATA method, 155
EndDocument method, 156
EndDTD method, 157
EndElement method, 158
EndEntity method, 159
EndPrefixM apping method, 160
Error method, 161
External EntityDecl method, 162
Fatal Error method, 163
GetProperty method, 164
I gnorableWhitespace method, 166
Init method, 167
Internal EntityDecl method, 169
NotationDecl method, 170
object, 146
ParseFile method, 171
Processinglnstruction method, 172
SetProperty method, 173
SkippedEntity method, 174
StartCDATA method, 175
StartDocument method, 176
StartDTD method, 177
StartElement method, 178
StartEntity method, 180
StartPrefixmapping method, 181
StopParsing method, 182
UnparsedEntityDecl method, 183
Warning method, 184

What's New in IDL 5.6

IDLgrContour
AdjustL abel Off sets method, 186
GetL abellnfo method, 187
ION
availability, 135
ION Java
accessing Object Graphics, 137
array dimension support, 138
enhancements, 137
IDL command execution status, 137
mapping, plotting and contour support, 138
ION Script
data type support, 135
multiple selection in forms, 136
variable evaluation, 136
variable formatting, 135
ITIFF files, 33

K

keywords
determining if set, 1-element array, 32

L

LA_CHOLDC procedure, 314
LA_CHOLMPROVE function, 317
LA_CHOLSOL function, 320
LA_DETERM function, 323
LA_EIGENPROBLEM function, 325
LA_EIGENQL function, 331
LA_EIGENVEC function, 337
LA_ELMHES function, 341
LA_GM_LINEAR_MODEL function, 344
LA_HQR function, 347
LA_INVERT function, 350
LA_LEAST_SQUARE_EQUALITY function,
352
LA_LEAST_SQUARESfunction, 355
LA_LINEAR_EQUATION function, 359

What's New in IDL 5.6

LA_LUDC procedure, 362
LA_LUMPROVE function, 365
LA_LUSOL function, 368
LA_SVD procedure, 371
LA_TRIDC procedure, 375
LA_TRIMPROVE function, 379
LA_TRIQL procedure, 383
LA_TRIRED procedure, 386
LA_TRISOL function, 388
labeling

contour lines, 15

contour objects, 13

polyline objects, 14
LAPACK numerical library, 20
license, personal use, 55
linear algebra

LA CHOLDC, 314

LA CHOLMPROVE, 317

LA_CHOLSOL, 320

LA DETERM, 323

LA _EIGENPROBLEM, 325

LA _EIGENVEC, 337

LA _ELMHES, 341

LA_HQR, 347

LA _INVERT, 350

LA_LUDC, 362

LA LUMPROVE, 365

LA_LUSOL, 368

LA SVD, 371

LA TRIDC, 375

LA_TRIQL, 383

LA TRIRED, 386

LA_TRISOL, 388

LAPACK library support, 20
linear model

Gauss-Markov, 344
lines

counting, 200
LU decomposition

LA_LUDC procedure, 362

LA_LUSOL function, 368

505

Index

506

LA_TRIDC function, 375

M

Macintosh OS X support, 56
map coordinates

transforming, 391, 412

between Cartesian and lat/lon, 37

map projections, 396

USGS General Cartographic Transformation

Package support, 37

MAP_PROJ FORWARD function, 391
MAP_PROJ_INIT function, 396
MAP_PROJ INVERSE function, 412
matrices

computing diagonal matrix or vector, 23

computing power of, 23

DIAG_MATRIX, 193
matrix operators

LA CHOLDC, 314

LA CHOLMPROVE, 317

LA_CHOLSOL, 320

LA DETERM, 323

LA _EIGENPROBLEM, 325

LA _EIGENVEC, 337

LA _ELMHES, 341

LA_HQR, 347

LA _INVERT, 350

LA_LUDC, 362

LA LUMPROVE, 365

LA_LUSOL, 368

LA SVD, 371

LA TRIDC, 375

LA_TRIQL, 383

LA TRIRED, 386

LA_TRISOL, 388
MATRIX_POWER function, 414
median

within array dimensions, 25
memory

mapping shared, 27

Index

Mesalibrary, 12
moving files, 206
multi-threading

enhanced support for, 31

O

Object Graphics
software rendering, 12
objects
clipping planes, 15
ONLINE_HELP
modifications, 59
OpenGL rendering
HP, Linux support of, 18
software rendering support of, 12

P

parser, XML, 478
path

expansion, 29

setting path preferences, 39
pixels

returning val ue of

using objects, 18

PRODUCT function, 416

R

region of interest

masking, 23
REGISTER_CURSOR procedure, 419
rendering

hardware, HP, Linux support, 18

software, supported library, 12
resource names for IDL widgets, 455
reversing

byte order, 447

What's New in IDL 5.6

S

SAX (Simple API for XML) see XML
search path

expansion, 29
ShapeFile

dBASE table access, 36
sharable library

building conditionally, 30
shared memory

debugging, 421

mapping, 423

support of, 27

unmapping, 438
SHMDEBUG function, 421
SHMMAP procedure, 423
SHMUNMAP procedure, 438
SHMV AR function, 440
singular value decomposition, 371
SKIP_LUN procedure, 444
software rendering

library support of, 12
SWAP_ENDIAN_INPLACE procedure, 447
symbolic links

creating, 203

following, 209
symbols

use in polyline abjects, 14

T

tab widgets

about, 459

events returned by, 466
text files, counting lines, 200
texture mapping

automatic creation of, 16
transforming

map coordinates, 37, 391, 412
tree widgets

about, 467

What's New in IDL 5.6

507

events returned by, 474
tridiagonal array or matrix, 388
TRUNCATE_LUN procedure, 449
truncating

contents of afile, 449

U

USGS General Cartographic Transformation
Package, 37

4
viewing
HDF5 files, 214

w

WIDGET_COMBOBOX function, 44, 451
WIDGET _INFO function
enhancements, 54
WIDGET_TAB function, 45, 459
WIDGET_TREE function, 45, 467
widgets
button
color options, 49
buttons
appearance of toggle buttons, 49
menu checkmark, 50
tooltip sample, 50
changing appearance of, 455
combobox, 451
iconify events, 48
|abel
label appearance, 53
move events, 47
resize events, 48
resizing (DYNAMIC_RESIZE keyword),
452
sensitizing and de-sensitizing, 455, 464, 472

Index

508

tab, 459

table
enhancements, 46

tree, 467

X

X Windows resource names, 455
XML

Index

Seealso IDLFEXMLSAX.
about, 478

DOM, 478

DTD, 483

parsers, 146, 478

SAX, 479

Schema, 483

validation, 483

What's New in IDL 5.6

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 5.6
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	IDL Quick Reference
	IDL Reference Guide
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL DataMiner Guide
	DataDirect Connect ODBC Reference (3.11 for IRIX and Mac)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit User's Guide

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	What's New in IDL: Contents
	Overview of New Features in IDL 5.6
	Visualization Enhancements
	Mesa Library Update
	Labels for Contour Objects
	Labels for Polyline Objects
	Labels for ISOCONTOUR
	New User-Defined Clipping Planes for Objects
	New Keyword to Determine the Maximum Number of Clipping Planes
	Enhancements for Displaying Points and Lines in Object Graphics
	OpenGL Hardware Support for Object Graphics on HP and Linux
	New User-Defined Cursor Registration
	New Keyword to PickData Method

	Analysis Enhancements
	New LAPACK Linear Algebra Routines
	New DIAG_MATRIX Function
	New MATRIX_POWER Function
	New PRODUCT Function
	New Run-length Encoding for ROI Masks
	New Complex Input Support
	Enhancements to ATAN
	Enhancements to the BESEL Functions
	Enhancement to the CURVEFIT Function
	Enhancements to the EXPINT Function
	Enhancements to the GAUSSFIT Function
	Enhancements to the MEDIAN Function

	Language Enhancements
	New Stride Syntax for Array Subscripts
	New Shared Memory Support
	New and Enhanced File Handling Routines
	New SWAP_ENDIAN_INPLACE Procedure
	New Keywords to SWAP_ENDIAN Function
	Enhancements to the EXPAND_PATH Function
	Enhancements to the MAKE_DLL Procedure
	New STRICTARRSUBS Option to COMPILE_OPT
	Large File Support for AIX and Linux Platforms
	Note for AIX Users

	Large File Support For Compressed Files
	64-bit Memory Support On More Platforms
	Thread Pool and Multi-Threading Support On AIX and Mac OS X
	Enhancements to the KEYWORD_SET Function

	File Access Enhancements
	New Support for ITIFF
	New XML Parser Object
	New HDF5 Routines
	New H5_BROWSER Routine
	HDF and HDF-EOS Library Updates
	Enhanced Support for Shapefiles

	Mapping Enhancements
	MAP_PROJ_INIT Function
	MAP_PROJ_FORWARD, and MAP_PROJ_INVERSE Functions

	IDLDE Enhancements
	Copying and Pasting Multiple IDL Code Lines
	Block Comments
	Changes to Path Preferences
	Setting Path Preferences

	IDL GUIBuilder Enhancements
	Support for Tab Widget
	Support for Tree Widget
	Support for Context Events
	Support for Tooltips
	Support for Checked Menu Items
	Support for Sunken Labels
	Support for Move, Iconify, and Size Events for Base Widgets
	Support for Keyboard Events for Draw Widget

	User Interface Toolkit Enhancements
	New COM Functionality
	Support for Optional Arguments
	Support for Default Values
	Support for Argument Skipping
	Support for Function Return Values
	Additional COM Type Mappings

	New Combobox Widget
	New Tab Widget
	New Tree Widget
	Table Widget Enhancements
	Disjoint Cell Selection
	New Deselection Event
	Cell Selection and Edit Mode
	Blanking Table Cells

	Move, Iconify, Size Events for Base Widgets
	Move Events
	Iconify Events
	Resize Events

	Color Bitmap Buttons from Array Data
	Push and Toggle Buttons
	Checkmarks on Menu Buttons
	Tooltips for Button and Draw Widgets
	Keyboard Events for Draw Widgets
	Scrolling Draw Widget Enhancements
	Label Widget Enhancements
	Enhancements to WIDGET_INFO

	New Personal Use Licensing
	New Support for Macintosh OS X
	Documentation Enhancements
	New Image Processing in IDL Manual
	Revised Graphical User Interface Documentation
	Revised and Enhanced External Development Guide
	Version History in Reference Documentation
	New Online Help Systems
	Changes to ONLINE_HELP and the “?” Command

	New and Enhanced IDL Objects
	New IDL Object Classes
	New IDL Object Methods
	IDL Object Method Enhancements
	IDLanROI::ComputeMask
	IDLanROIGroup::ComputeMask
	IDLffShape::GetProperty
	IDLffShape::Init
	IDLffShape::Open
	IDLgrAxis::Init
	IDLgrBuffer::GetDeviceInfo
	IDLgrBuffer::PickData
	IDLgrClipboard::GetDeviceInfo
	IDLgrContour::Init
	IDLgrImage::Init
	IDLgrModel::Init
	IDLgrPlot::Init
	IDLgrPolygon::Init
	IDLgrPolyline::Init
	IDLgrROI::Init
	IDLgrROIGroup::Init
	IDLgrSurface::Init
	IDLgrSymbol::Init
	IDLgrTessellator::AddPolygon
	IDLgrTessellator::Tessellate
	IDLgrText::Init
	IDLgrVolume::Init
	IDLgrVRML::GetDeviceInfo
	IDLgrWindow::GetDeviceInfo
	IDLgrWindow::PickData
	IDLgrWindow::SetCurrentCursor

	New and Enhanced IDL Routines
	New IDL Routines
	IDL Routine Enhancements
	ATAN
	BESELI, BESELJ, BESELK, BESELY
	BETA
	COMPILE_OPT
	CURVEFIT
	DIGITAL_FILTER
	ERF
	ERFC
	ERFCX
	EXPINT
	FILE_DELETE
	GAMMA
	GAUSSFIT
	HELP
	HISTOGRAM
	IBETA
	IGAMMA
	ISOCONTOUR
	KEYWORD_SET
	LNGAMMA
	MAKE_DLL
	MEDIAN
	SVDFIT
	SWAP_ENDIAN
	WIDGET_BASE
	WIDGET_BUTTON
	WIDGET_CONTROL
	WIDGET_DRAW
	WIDGET_INFO
	WIDGET_LABEL
	WIDGET_TABLE
	WRITE_TIFF
	XROI

	ION 1.6 Enhancements
	ION Script Enhancements
	New ION_OBJECT Tag
	New FORMAT Attribute For ION Script Variables
	ION_EVALUATE and ION_VARIABLE Can Now Be Used Inside <IDL> Blocks
	New Support For MULTIPLE Attribute In HTML SELECT Tag
	New Example For Passing Data From IDL to ION Script

	ION Java Enhancements
	IONGr2Canvas Class Now Obsolete
	IDL Command Execution Status Now Properly Reported
	New IONVariable Methods Return Dimensioned Results
	New Supported Keywords for Contours, Maps, Plots, and Surfaces

	Routines Obsoleted in IDL 5.6
	Requirements for this Release
	IDL 5.6 Requirements
	Hardware Requirements for IDL 5.6
	Software Requirements for IDL 5.6

	ION 1.6 Requirements
	Hardware Requirements for ION 1.6
	Web Servers
	Web Browsers
	Java Virtual Machines

	Windows 98 Platform Support Ending

	New IDL Objects and Methods
	IDLffXMLSAX object
	Intrinsic Methods
	eName
	aName
	Type
	Mode
	Value
	Chars
	Comment
	Name
	Model
	URI
	Local
	qName
	Name
	Prefix
	SystemID
	LineNumber
	ColumnNumber
	Message
	Name
	PublicID
	SystemID
	SystemID
	LineNumber
	ColumnNumber
	Message
	FILENAME
	PARSER_LOCATION
	PARSER_PUBLICID
	PARSER_URI
	Chars
	NAMESPACE_PREFIXES (Get, Set)
	SCHEMA_CHECKING (Get, Set)
	VALIDATION_MODE (Get, Set)
	Name
	Value
	Name
	PublicID
	SystemID
	Filename
	Target
	Data
	Name
	Name
	PublicID
	SystemID
	URI
	Local
	qName
	attrName
	attrValue
	Name
	Prefix
	URI
	Name
	PublicID
	SystemID
	Notation
	SystemID
	LineNumber
	ColumnNumber
	Message

	IDLgrContour object
	LevelIndex
	LabelOffsets
	Destination
	LevelIndex
	LABEL_OFFSETS
	LABEL_POLYLINES
	LABEL_OBJECTS

	New IDL Routines
	COPY_LUN
	FromUnit
	ToUnit
	Num
	EOF
	LINES
	TRANSFER_COUNT

	DIAG_MATRIX
	A
	Diag

	FILE_COPY
	SourcePath
	DestPath
	ALLOW_SAME
	COPY_NAMED_PIPE (UNIX Only)
	COPY_SYMLINK (UNIX Only)
	FORCE (UNIX Only)
	NOEXPAND_PATH
	OVERWRITE
	RECURSIVE
	REQUIRE_DIRECTORY
	VERBOSE

	FILE_LINES
	Path
	NOEXPAND_PATH

	FILE_LINK
	SourcePath
	DestPath
	ALLOW_SAME
	HARDLINK
	NOEXPAND_PATH
	VERBOSE

	FILE_MOVE
	SourcePath
	DestPath
	ALLOW_SAME
	NOEXPAND_PATH
	OVERWRITE
	REQUIRE_DIRECTORY
	VERBOSE

	FILE_READLINK
	Path
	ALLOW_NONEXISTENT
	ALLOW_NONSYMLINK
	NOEXPAND_PATH

	FILE_SAME
	Path1, Path2
	NOEXPAND_PATH

	H5_BROWSER
	Files
	DIALOG_READ
	Open HDF5 file
	Show preview
	Fit in window
	Flip vertical
	Flip horizontal
	Open
	Cancel
	Variable name for import
	Include data
	Import to IDL
	Done

	H5_CLOSE
	H5_GET_LIBVERSION
	H5_OPEN
	H5_PARSE
	Structure Fields Common to All Object Types
	Additional Fields for Groups, Datasets, and Named Datatypes
	Additional Fields for Groups
	Additional Fields for Datasets, Attributes, and Named Datatypes
	Additional Fields for Datasets and Attributes
	File
	Loc_id
	Name
	FILE
	PATH
	READ_DATA

	H5A_CLOSE
	Attribute_id

	H5A_GET_NAME
	Attribute_id

	H5A_GET_NUM_ATTRS
	Loc_id

	H5A_GET_SPACE
	Attribute_id

	H5A_GET_TYPE
	Attribute_id

	H5A_OPEN_IDX
	Loc_id
	Index

	H5A_OPEN_NAME
	Loc_id
	Name

	H5A_READ
	Attribute_id

	H5D_CLOSE
	Dataset_id

	H5D_GET_SPACE
	Dataset_id

	H5D_GET_STORAGE_SIZE
	Dataset_id

	H5D_GET_TYPE
	Dataset_id

	H5D_OPEN
	Loc_id
	Name

	H5D_READ
	Dataset_id
	FILE_SPACE
	MEMORY_SPACE

	H5F_CLOSE
	File_id

	H5F_IS_HDF5
	Filename

	H5F_OPEN
	Filename

	H5G_CLOSE
	Group_id

	H5G_GET_COMMENT
	Loc_id
	Name

	H5G_GET_LINKVAL
	Loc_id
	Name

	H5G_GET_MEMBER_NAME
	Loc_id
	Name
	Index

	H5G_GET_NMEMBERS
	Loc_id
	Name

	H5G_GET_OBJINFO
	FILENO
	OBJNO
	NLINK
	TYPE
	MTIME
	LINKLEN
	Loc_id
	Name
	FOLLOW_LINK

	H5G_OPEN
	Loc_id
	Name

	H5I_GET_TYPE
	Obj_id

	H5R_DEREFERENCE
	Loc_id
	Reference

	H5R_GET_OBJECT_TYPE
	Loc_id
	Reference

	H5S_CLOSE
	Dataspace_id

	H5S_COPY
	Dataspace_id

	H5S_CREATE_SIMPLE
	Dimensions
	MAX_DIMENSIONS

	H5S_GET_SELECT_BOUNDS
	Dataspace_id

	H5S_GET_SELECT_ELEM_NPOINTS
	Dataspace_id

	H5S_GET_SELECT_ELEM_POINTLIST
	Dataspace_id
	START
	NUMBER

	H5S_GET_SELECT_HYPER_BLOCKLIST
	Dataspace_id
	START
	NUMBER

	H5S_GET_SELECT_HYPER_NBLOCKS
	Dataspace_id

	H5S_GET_SELECT_NPOINTS
	Dataspace_id

	H5S_GET_SIMPLE_EXTENT_DIMS
	Dataspace_id
	MAX_DIMENSIONS

	H5S_GET_SIMPLE_EXTENT_NDIMS
	Dataspace_id

	H5S_GET_SIMPLE_EXTENT_NPOINTS
	Dataspace_id

	H5S_GET_SIMPLE_EXTENT_TYPE
	Dataspace_id

	H5S_IS_SIMPLE
	Dataspace_id

	H5S_OFFSET_SIMPLE
	Dataspace_id
	Offset

	H5S_SELECT_ALL
	Dataspace_id

	H5S_SELECT_ELEMENTS
	Dataspace_id
	Coordinates
	RESET

	H5S_SELECT_HYPERSLAB
	Dataspace_id
	Start
	Count
	BLOCK
	RESET
	STRIDE

	H5S_SELECT_NONE
	Dataspace_id

	H5S_SELECT_VALID
	Dataspace_id

	H5T_CLOSE
	Datatype_id

	H5T_COMMITTED
	Datatype_id

	H5T_COPY
	Datatype_id

	H5T_EQUAL
	Datatype_id1
	Datatype_id2

	H5T_GET_ARRAY_DIMS
	Datatype_id
	PERMUTATIONS

	H5T_GET_ARRAY_NDIMS
	Datatype_id

	H5T_GET_CLASS
	Datatype_id

	H5T_GET_CSET
	Datatype_id

	H5T_GET_EBIAS
	Datatype_id

	H5T_GET_FIELDS
	TYPE_ID
	SIGN_POS
	EXP_POS
	EXP_SIZE
	MAN_POS
	MAN_SIZE
	Datatype_id

	H5T_GET_INPAD
	Datatype_id

	H5T_GET_MEMBER_CLASS
	Datatype_id
	Member

	H5T_GET_MEMBER_NAME
	Datatype_id
	Member

	H5T_GET_MEMBER_OFFSET
	Datatype_id
	Member

	H5T_GET_MEMBER_TYPE
	Datatype_id
	Member

	H5T_GET_NMEMBERS
	Datatype_id

	H5T_GET_NORM
	Datatype_id

	H5T_GET_OFFSET
	Datatype_id

	H5T_GET_ORDER
	Datatype_id

	H5T_GET_PAD
	Datatype_id

	H5T_GET_PRECISION
	Datatype_id

	H5T_GET_SIGN
	Datatype_id

	H5T_GET_SIZE
	Datatype_id

	H5T_GET_STRPAD
	Datatype_id

	H5T_GET_SUPER
	Datatype_id

	H5T_IDLTYPE
	Datatype_id
	ARRAY_DIMENSIONS
	STRUCTURE

	H5T_MEMTYPE
	Datatype_id

	H5T_OPEN
	Loc_id
	Name

	LA_CHOLDC
	Array
	DOUBLE
	STATUS
	UPPER

	LA_CHOLMPROVE
	Array
	Achol
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR
	UPPER

	LA_CHOLSOL
	A
	B
	DOUBLE
	UPPER

	LA_DETERM
	A
	CHECK
	DOUBLE
	ZERO

	LA_EIGENPROBLEM
	A
	B
	ALPHA
	BALANCE
	BETA
	DOUBLE
	EIGENVECTORS
	LEFT_EIGENVECTORS
	NORM_BALANCE
	PERMUTE_RESULT
	RCOND_VALUE
	RCOND_VECTOR
	SCALE_RESULT
	STATUS

	LA_EIGENQL
	A
	B
	DOUBLE
	EIGENVECTORS
	FAILED
	GENERALIZED
	METHOD
	RANGE
	SEARCH_RANGE
	STATUS
	TOLERANCE

	LA_EIGENVEC
	T
	QZ
	BALANCE
	DOUBLE
	EIGENINDEX
	LEFT_EIGENVECTORS
	PERMUTE_RESULT
	RCOND_VALUE
	RCOND_VECTOR
	SCALE_RESULT
	SELECT

	LA_ELMHES
	Array
	Q
	BALANCE
	DOUBLE
	NORM_BALANCE
	PERMUTE_RESULT
	SCALE_RESULT

	LA_GM_LINEAR_MODEL
	A
	B
	D
	Y
	DOUBLE

	LA_HQR
	H
	Q
	DOUBLE
	PERMUTE_RESULT
	STATUS

	LA_INVERT
	A
	DOUBLE
	STATUS

	LA_LEAST_SQUARE_EQUALITY
	A
	B
	C
	D
	DOUBLE
	RESIDUAL

	LA_LEAST_SQUARES
	A
	B
	DOUBLE
	METHOD
	RANK
	RCONDITION
	RESIDUAL
	STATUS

	LA_LINEAR_EQUATION
	Array
	B
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR
	STATUS

	LA_LUDC
	Array
	Index
	DOUBLE
	STATUS

	LA_LUMPROVE
	Array
	Aludc
	Index
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR

	LA_LUSOL
	A
	Index
	B
	DOUBLE

	LA_SVD
	Array
	W
	U
	V
	DIVIDE_CONQUER
	DOUBLE
	STATUS

	LA_TRIDC
	AL
	A
	AU
	U2
	Index
	DOUBLE
	STATUS

	LA_TRIMPROVE
	AL
	A
	AU
	DAL
	DA
	DAU
	DU2
	Index
	B
	X
	BACKWARD_ERROR
	DOUBLE
	FORWARD_ERROR

	LA_TRIQL
	D
	E
	A
	DOUBLE
	STATUS

	LA_TRIRED
	Array
	D
	E
	DOUBLE
	UPPER

	LA_TRISOL
	AL
	A
	AU
	U2
	Index
	B
	DOUBLE

	MAP_PROJ_FORWARD
	Longitude
	Latitude
	CONNECTIVITY
	MAP_STRUCTURE
	POLYGONS
	POLYLINES
	RADIANS

	MAP_PROJ_INIT
	Projection
	DATUM
	GCTP
	LIMIT
	RADIANS
	RELAXED
	CENTER_AZIMUTH
	CENTER_LATITUDE
	CENTER_LONGITUDE
	FALSE_EASTING
	FALSE_NORTHING
	HEIGHT
	HOM_AZIM_LONGITUDE
	HOM_AZIM_ANGLE
	HOM_LATITUDE1
	HOM_LATITUDE2
	HOM_LONGITUDE1
	HOM_LONGITUDE2
	IS_ZONES
	IS_JUSTIFY
	MERCATOR_SCALE
	OEA_ANGLE
	OEA_SHAPEM
	OEA_SHAPEN
	ROTATION
	SEMIMAJOR_AXIS
	SEMIMINOR_AXIS
	SOM_INCLINATION
	SOM_LONGITUDE
	SOM_PERIOD
	SOM_RATIO
	SOM_FLAG
	SOM_LANDSAT_NUMBER
	SOM_LANDSAT_PATH
	SPHERE_RADIUS
	STANDARD_PARALLEL
	STANDARD_PAR1
	STANDARD_PAR2
	SAT_TILT
	TRUE_SCALE_LATITUDE
	ZONE

	MAP_PROJ_INVERSE
	X
	Y
	MAP_STRUCTURE
	RADIANS

	MATRIX_POWER
	Array
	N
	DOUBLE
	STATUS

	PRODUCT
	Array
	Dimension
	CUMULATIVE
	NAN
	Thread Pool Keywords

	REGISTER_CURSOR
	Name
	Image
	MASK
	HOTSPOT
	OVERWRITE

	SHMDEBUG
	Enable

	SHMMAP
	Why Use Mapped Memory?
	SegmentName
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DESTROY_SEGMENT
	DIMENSION
	DOUBLE
	FILENAME
	FLOAT
	GET_NAME
	GET_OS_HANDLE
	INTEGER
	L64
	LONG
	OFFSET
	OS_HANDLE
	Posix (UNIX) Shared Memory
	UNIX System V Shared Memory
	Windows Anonymous Shared Memory
	UNIX Memory Mapped Files
	Windows Memory Mapped Files

	PRIVATE
	SIZE
	SYSV
	TEMPLATE
	TYPE
	UINT
	ULONG
	UL64
	Types Of Memory Segments
	UNIX
	UNIX Memory Mapped Files
	UNIX System V Shared Memory
	Posix Shared Memory
	Microsoft Windows

	Reference Counts And Memory Segment Lifecycle
	Example 1
	Example 2
	Example 3
	Example 4

	SHMUNMAP
	SegmentName

	SHMVAR
	SegmentName
	Di
	BYTE
	COMPLEX
	DCOMPLEX
	DIMENSION
	DOUBLE
	FLOAT
	INTEGER
	L64
	LONG
	SIZE
	TEMPLATE
	TYPE
	UINT
	ULONG
	UL64

	SKIP_LUN
	FromUnit
	Num
	EOF
	LINES
	TRANSFER_COUNT

	SWAP_ENDIAN_INPLACE
	Variable
	SWAP_IF_BIG_ENDIAN
	SWAP_IF_LITTLE_ENDIAN

	TRUNCATE_LUN
	Unitn
	Example 1
	Example 2

	WIDGET_COMBOBOX
	Parent
	DYNAMIC_RESIZE
	EDITABLE
	EVENT_FUNC
	EVENT_PRO
	FONT
	FRAME
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	RESOURCE_NAME
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TRACKING_EVENTS
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_TAB
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	EVENT_FUNC
	EVENT_PRO
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	LOCATION
	MULTILINE
	Windows
	Motif

	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	UNAME
	UNITS
	UVALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE

	WIDGET_TREE
	Parent
	ALIGN_BOTTOM
	ALIGN_CENTER
	ALIGN_LEFT
	ALIGN_RIGHT
	ALIGN_TOP
	BITMAP
	CONTEXT_EVENTS
	EVENT_FUNC
	EVENT_PRO
	EXPANDED
	FOLDER
	FUNC_GET_VALUE
	GROUP_LEADER
	KILL_NOTIFY
	MULTIPLE
	NO_COPY
	NOTIFY_REALIZE
	PRO_SET_VALUE
	SCR_XSIZE
	SCR_YSIZE
	SENSITIVE
	TOP
	UNAME
	UNITS
	UVALUE
	VALUE
	XOFFSET
	XSIZE
	YOFFSET
	YSIZE
	Select (TYPE = 0)
	Expand (TYPE = 1)
	Context Menu Events

	Using the XML Parser Object Class
	About XML
	About XML Parsers
	Tree-based Parsers
	Event-based Parsers

	Using the XML Parser
	Subclassing the IDLffXMLSAX Object Class
	Define a Class Structure
	Override Superclass Methods
	Write Additional Methods
	Create a Class Definition Routine

	Using Your Parser
	Validation

	Example: Reading Data Into an Array
	Creating the xml_to_array Object Class
	Object Class Definition
	Init Method
	Cleanup Method
	Characters Method
	StartDocument Method
	StartElement Method
	EndElement Method
	GetArray Method

	Using the xml_to_array Parser

	Example: Reading Data Into Structures
	Creating the xml_to_struct Object Class
	Object Class Definition
	Init Method
	Characters Method
	StartElement Method
	EndElement Method
	GetArray Method

	Using the xml_to_struct Parser

	Building Complex Data Structures
	Use Dynamically Sized Arrays if Necessary
	Use Fixed-Size Arrays When Possible
	Using Nested Structures

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

